
WWMCCS
Host to Front End Protocols:
Specifications Version 1.0

,!ohn D. Day
Gary R. Grossman
Richard H. Howe DTIC

S ELECTE

JUN 2 21981

B

5 November 1979
DTI Document 78012.C-INFE.14

SDISTRIBUTIONSTfATEMENT
App-roved foe p blic release,

Distzibutiou Unlimited

81 6 10 038

DTI -Deei mn-78Z12.C-INFE.14 V

WWMCCS

HOST TO FRONT END PROTOCOLS:

Specifications

by

John D. Day
Gary R. Grossman
Richard H. Howe

Prepared for the
Defense Communications Agency

under contract /
DCA100-77-C-0069

Phase B Network Front End Research and Development

by

DIGITAL TECHNOLOGY INCORPORATED
302 E. John, Champaign, Illinois 61820

5 November 1979 DIBTRIBUTION STATEMENT AIAppzwd foc public release,
Distibution. Unlimited

Approved forReas:
Sel ase

Jo y .KrvtroetManager

ABSTRACT

This document presents the specifications of
the WWMCCS host to front end protocols. A
brief overview of the IWMCCS network front
end protocol architecture is presented. The
link protocol is functionally specified. The

> channelV.. protocol is completely specified.
The complete channel protocol specification
includes a narrative overview of the channel
protocol mechanisms, a detailed treatment of
each channel protocol message and event type,
and a complete state table. A meta-specification for the service access proto-
cols is presented.

Accession For
NTIS GTRA&I

DTIC TAB [
Unannounced 0I
Justification-

Distribut ion/
Availability Codes

lAvail and/or
D~t ISpecial

4Al

Table of Contents

f Page

NETWORK FRONT END PROTOCOL ARCHITECTU IRE. 1I

Network Front End
.nFE Protocol Architecturei.....................i.....

NOTE ON THE 'SPECIFICATIONS 3

Specifying the Link Protocol'3
Specifying the Channel Protocol3

Specifying the Service Access Protocols 4

LINK PROTOCOL SPECIFICATION i....

CHANNEL PROTOCOL SPECIFICATION...............................9

-overview .. 9

Channel Protocol Messages 10

Channel Machines........... 1
channel Multiplexor/Demultiplexor;...12

Message Formatting and Filtering13

Channel Protocol Message Formatting,.;..................'. 13
Parts of Messages 13'
HEADER Fields ^ 15........ i

Channel Protocol Message Filtering z....i.............16
Status Codes i9,

Message Multiplexing and Demultiplexing -. .~.... 21

Addressing Conventionis 21
Multiplexing I,.-, 22
Demultiplexing 22

Trahsmission Control _4....25
Contr6lled Transmission Mechanisms 5

Controlled Trans -mission Procedures...................31
Uncontrolled Transmision................. 39

Termination-.... 41

Non-Flushing Deadlock Avoidance-.....-............. 42

NOTATION AND-NOMENCLATURE........ 45

COMMANDS AND RESPONSES49

Introduction .. 49

BeginCommand... 51

Begin--Response.. 54

EndCommand58

End-Response 64

Execute CommandI......................................69

ExecuteResponse ...73

NOP 76

TransmitCommand i..78
TransmitResponse 81

Table of-Contents Continued

Page

Complete Channel Machine State table 85
introduction ...85
State Table ... 87'

CHANNEL INTERFACE ..-89

Introduction ..99
c accept .. 100
c begin c ... 101
c begin r...102
c end c.. 104

-n r...................................!.....10

cexecute c ... 109
'Ix c t -I. ... 1

_ executer.. 111
c_ready. ...112
c sreject..116
ctatumit.. 116
c -tragnsi_c.. 119

s-begin -cr...120r -s_en_ .. 122
s-end -cr..125
s endcur...127
s-execute-rc...132
s-ieectefr..132
s iedntif... 136

sstranusit.. 139
srady..136

INITIALIZING HOST - FRONT END COMMUNICATION141

SPECIFYING SERVICE ACCESS PROTOCOLS 143

jjIntroduction .. 143
Specifications and Adaptation Descriptions 143

Service Access Protocol Specifications 145
Specifying Fields 147
De~faults.. 149

Adaptation Descriptions 150
Data Representation Mismatch 153

SAPI State Table... 155
Introduction ... 155
State Table .. 158

HFP MAINTENANCE SERVICE ...163

Channel Protocol Response Status Codea 173

*1 IEI0

fu
E-

zr

0

0) W
'1 0

I 0

4

I 0

I .

.00

V 0)
tr4

NETWORK FRONT END PROTOCOL ARCHITECTURE

Ne tw______o ___kk o____t E__dd

-Network Front End

A network front end (NFE)- is a computer system that interfaces

a host computer and terminals to a network. A host connected

directly to a network must support the often large and complex

protocol interpreters for the network services. An NFE3

implements these protocol interpreters for the host. An NFE

thus relieves the host of a considerable burden of protocol

processing. A front ended host need support only the

relatively simple interpreters for the host to front end

protocols. This frees host resources for applications use.

An NFE also provides terminal access to the network. This

further frees host resources and also provides for continued

access to the network in the event of host failure.

NFE Protocol Architecture

An NFE implements two different sets of protocols (see Figure

1):

1. the protocols for the network communication services,

and

2. the host to front end protocols.

The protocols for the network services include:

1. a link orotocol for communication between the front
end and the local packet switch,

r 2. a transport protocol for reliable data transfer
between local and remote subscriber processes, and

NFE Protocol Architecture

3. one or more higher order service protocols fori e.g.,
a network virtual terminal or a file transfdr
service.

The host to front end protocols include:

1. a link protocol for communication between the host
and the front end,

2. a "channel" protocol for reliable data transfer
between host and front end processes, and

3. for each network (or other) service supported by the
front end, a "'service access" ,protocol which provides
for mutual access between host applications and the
service.

The interpreters for these protocols have their apposites* in

the host.

As Figure 1 indicates, both the network services and the host to

front end protocols are layered. The network layers are, from

bottom to top: the link layer, the transport layer, and the

higher order service(s) layer(s). The host to front end layers

are, from bottom to top: the link layer, the channel layer, and

the service access layer.

"Apposite": Having the same syntactic relation. E.g., in
Figure 1, the channel protocol interpreter in the host and the
channel protocol interpreter in the front end are each other's
apposites.

2 -

- --- - --f

N116 ~1te on the, SP66ificat- -ohs

NOTE ON THE SPECIFIGATIONS

Specifying the Link Protocol

The link protocol definition depends on the link hardware.

Thus, 'the 1ink protocol cannot be specified without reference

to a particular installation. However, the properties of the

virtual communications medium that the link protocol

dimplementation must provide have been functionally specified

in the present document. When a link protocol satisfying this

functional specification has been accepted for a given

installation, the complete link protocol specification should

be appended to the present document.

Spe2if iy the Channel Protocol

The channel protocol definition is implementation independent.

Thus, the channel protocol has been completely specified in

the present document. Included in this specification is a

descriptive model of the interface between a channel protocol

interpreter (CPI) and any service access protocol interpreters

(SAPIs) or other processes that communicate directly with a

CPI. The interface between a CPI and the link protocol

interpreter is to be defined by the link protocol. Therefore,

ii

Note on the Specifications

the CPI-link interface has hot been specified in the present

document.

Specifyin the Service Access Protocols

The service access protocol definitions depend on the services

to which they provide access. Thus, the service access

protocols cannot be specified without reference to the

particular services. For the same reason, they cannot be

functionally specified. However, to ensure uniform

documentation, a meta-specification of the service access

protocols is presented in the present document. Whenever a

service access protocol satisfying this meta-specification has

been designed, the complete service access protocol

specification should be appended to the present document.

Note: every SAPI communicates directly with its CPI. This
direct communication is defined by the channel protocol (see
Channel Interface). In some cases, processes other than SAPIs
may communicate with one another using the channel protocol
implementation as their communications medium, Such processes
also communicate directly with their CPIs. Whenever such a
process is to be implemented, the complete specification of
its use of the channel interface and, if appropriate, its use
of service access protocol messages (see Specifying Service
Access Protocols)- should be appended to the present document.

I4

Link Protocol Specification

fLINK PROTOCOL

Specification

The hardware link between the host and the front end may differ

from site to site. Thus, the link protocol cannot be defined

without reference to a given installation. For each

installation, a link protocol must be implemented which provides

efficient bi-directional communication, i.e., which efficiently

uses the available host and front end resources as well as the

communications hardware. In addition to efficiency, the link

protocol implementation must provide the channel protocol

interpreters (CPIs) with a virtual communications medium having

the following properties:

1. the appearance of full duplex communication,
independently of whether the link itself is full or half
duplex,

2. delivery of data in-order and without duplication or

loss,

3. flow control,

4. bit stream transparency,

5. fault notification, and

6. quality of service defined as

a) an undetected bit error rate less than i0**~12,

b) undetected data loss rate less than i0**-15,
and

c) undetected misdelivery rate less than i0**-15.

If the link protocol does not provide the CPIs with a virtual

Link Protocol Specification

communications medium satisfying these criteria without

exception, their correct operation cannot be guaranteed.

When a link .protocol satisfying these criteria has been accepted,

the complete link protocol specification should be appended to

the present document. Either an existing or a new link protocol

may be used. If an existing link protocol is used, its

specification should already include the following information:

1) a reference to the document describing the link

protocol used,

2) the version of the protocol,

3) -the options implemented,

4) the parameter values used, such as time-out values,
etc.

5) a detailed description of any local conventions or
modifications to the protocol.

If any of this information is missing, the specification should

be augmented to include it.

If the link protocol accepted has been especially designed for a

particular host-front end configuration, then a link protocol

specification must be written. This specification should follow

as closely as possible the method of specification used in the

present document.

- -

BLANK PAGE

IAP

Channel Interface

ACharn e M ac h n

- - (Chan nel I nterf ace)1

State M~achines

Transmissi'. ControlI

Multiplexor Demultiplexor

Formnatting II7-ti xng

to Link level from Link level

Figure 2: CHANNEL PROTOCOL INTERPRETER FUNCTIONS

CHANNEL PROTOCOL

Specification

Overview

The host to front end channel protocol defines the virtual

communications medium for the service access protocol

interpreters (SAPIs) (see Figure 1). This communications nedium

appears to the SAPIs as a set of host to front end "virtual

channels", each of which will support a single service access

connection. The channel protocol provides for establishing And

terminating these channels and, together with the link protocoL,

provides for duplicate free, loss free, and error free data

exchange, which may he either ordered with flow control or

unordered without flow control.

The units of communication between channel protocol interpreters

(CPIs) are called "channel protocol messages". The units of

communication at the interface between a CPI and an SAP! are

called "channel interface events". The channel protocol defines:

1) the channel messages and channel interface events,

2) their use in establishing and terminating channels and in

effecting the flow of data over them, and

3) the states of each end of a channel together with the
state transition rules.

Each CPI consists functionally of a channel interface, channel

machines, and a multiplexor/demultiplexor (see Figure 2). The

channel interface provides access to the channels for the SAPIs.

- 9-

CHANNEL PROTOCOL
Overview

Each channel machine maintains the state of one end of a channel.

The multiplexor/demultiplexor multiplexes messages coming from

the channel machines and formats them for transmissipn via the

link level. It filters messages coming from the link level and

demultiplexes them to their respective channel machines.

Closely allied with each CPI is an HFP Maintenance Service

process that participates in initializing host-front end

communication, records errors reported by the CPI's), and

communicates these error reports between apposite CPIs.

Channel Protocol Messae!9s

There are five types of channel protocol messages: Begin,

Transmit, Execute, End, and Nop. A message of a given type

may be either a Command or a Response.

BeginCommands and BeginResponses are used by CPIs to

establish channels between them.

TransmitCommands and TransmitResponses are used by CPIs to

effect data exchange over the channels. The use of

Transmit Commands and Transmit Responses provides for

maintaining order and flow control.

ExecuteCommands and Execute_Responses are also used by CPIs

to effect data exchange over the channels, but the use of

ExecuteCommands and ExecuteResponses does not provide for

Vmaintaining order or flow control.

- 10 -

CHANNEL PROTOCOL
Overview

EndCommands and EndRespcnses are used by CPIs to terminate

one or more of the channels betwben them.

Nops are used by, CPIs as filler when channel protocol messages

do not complete'ly fil'l link protocol frames.

Channel Machines

A channel machine consists functionally of a state machine, a

transmission controller, and a channel interface (see Figure

2).

The state machine maintains the state of its end of the

channel. The state machine changes state in response to the

messages and interface events received by the channel machine.

The transmission controller provides message flow control,

duplicate message detection, and out of order message

detection (see Transmission Control).

The channel interface receives channel interface events from

the SAPI and the state machine, performs consistency checks on

them, and passes'them on to the state machine or the SAPI,

respectively.

CHANNEL PROTOCOL
Overview

Channel Multiplexor/Demultiplexor

The channel multiplexor/demultipIlexor performs multiplexing,

demultiplexing, formatting, and -filtering functions for the

CPI. Messages generated by the CPI are formatted accordAing to

the channel protocol message formats. Messages from the

channel machines, the filter,. and the demultiplexor are

multiplexed into a single stream and passed to the link level.

The multiplexor ensures that each channel receives its share

of the link level bandwidth.

Messages received from the link level are checked for

correctness and consistency. Messages fail-ing these checks

are filtered out of the data stream. The appropriate Response

(if any) is formulated and passed to the multiplexor for

transmission to the apposite CPI. The FIFP Maintenance Service

is notified of the error. Messages passing these checks are

sent to the demultiplexor.

The demultiplexor passes each message to the appropriate

channel machine, if possible. If there is no channel machine

to which to pass the message, the demultiplexor formulates the

appropriate Response (if any), passes the Response to the

multiplexor for transmission to the apposite CPI, and notifies

the HFP Maintenance Service of the error.

ii

Message Formatting and Fi -terin

Messag Formatting and Forltering

This section specifies the format of channel protocol messatles

and the consistency checks to be performed on each message before

accepting it.

Channel ,Protocol Message Formatting

In order to simplify decoding and buffer management, all

channel protocol messages have the. same basic format. This

forma-t is shown in Figure 3 (see p. 14).

Parts of Messaqes

Each message has three parts.

Part Function

HEADER comprises the fields containing the
information for executing the channel
protocol for this message (see below).

PAD is zero or more bits long (an
installation parameter) and serves
only to place TEXT on a boundary
convenient for both parties to the
protocol.

TEXT contains a service access or other
higher level protocol message. Since
the Size field (defined below)
contains the number of bits in the
entire message, and since the HEADER
is 72 bits long, the size of TEXT is:

(Size) - (size of PAD) - 72.

- 13 -

Me ss§a ge zForthatting and -Pilteting

Message Format

Alternate
Field Field Alternate

I-Field Size Size Field
Name (bits) (bits) Name

HEADER7 I-----
Si ze -1 I

Type I 3

C/RI 1

Credit I 4 1

Seq I 4 II
------ Service

Ack I 4 II(BEGINJ Command)

(not, used) I 4 II---

Group I12 I

Member I1.65

Control 8 II 8 IStatus
(Commands) III (Responses)

PAD Iwote A I

TEXT INote B I
I I

Note A: The size of PAD is an installation parameter.
Note B: The size of TEXT is computed by:

(Size) - (size of 'PAD) - 72.

Figure 3: CHANNEL PROTOCOL MESSAGE FORMAT

-14

Message Formatting and Filtering

HEADER Fields

The functions of the HEADER fields are defined below.

Field Function

Size specifies the number of bits in the
entire message. This field is 15 bits
long. It allows the representation of
message sizes of up to 65,535 bits.
Actual maximum message size is an
installation parameter which may be
less than this.

Type specifies the message type:

Begin 0
Transmit 1
Execute 3
End 4
Nop 5

C/R specifies whether the message is a
Command (C/R = 0) or a Response (C/R =
1).

Credit specifies the number of
Transmit Commands beyond the number
specified by the Ack field (see
below), which the sender of this
message is prepared to receive.

Seq specifies, in a Transmit Command, its
sequence number. Specifies, in all
other messages (except
Begin Commands), the sequence number
of the last Transmit Command sent by
the sender of this message. En
Begin Commands, both the Seq and Ack
fields are replaced by the Service
field.

Ack specifies the sequence number of the
last in-sequence Transmit Command
correctly received by the sender of
this message (except in
BeginCommands). In BeginCommands,
both the Seq and Ack fields are
replaced by the Service field.

Service specifies, in Begin_Commands, the SAPT

-15-

Message Formatting and Filtering

to which the channel is to be
established. The Service field
occupies the same space as the Sqq and
Ack fields in all other types of
messages.

Group specifies the channel group which the
message references (see Addressing
Conventions).

Member specifies the channel which the
message references within the channel
group (see Addressing Conventions).

Control specifies control information for
Execute Commands and End Command's.
Its use in other Commands is currently
undefined. The Control field in
Commands occupies the same space as
the Status field in Responses.

Status specifies status information in
Responses. The Status, field in
Responses occupies the same space as
the Control field in Commands.

Channel Protocol e Filterinq

When a channel protocol message is received by a CPI, it must

be checked for validity. Before the message is demultiplexed,

the filter function of the CPI performs validity checks on it

(see Figure 2). These validity checks are for:

Message Size: Compare message length for agreement with

the contents of the Size field. it is assumed that the

length, of q message can be determined- independently

-e-ither from the hardware or from the 1Uink protocol

interpreter.

-16-

Message ,FormaEting, and Filterlhg:

Note: The hardware determined length may be greater than
the contents of the Size fieid. (In sorte cases,, the
hardwar-e will pad the message out to a word boundary on
the receiving system.) In such a case,: the validitVy
check can only be for the hardware determined length
being :less than the contents of the Size field,.

Message Type: check the contents of the Type field to

determine whether or not the value represents a valid

Type.

Mess age too large: check the Size of the message to

determine whether or not it exceeds the maximum allowed

at this site.

Group and Member fields: check the Group and Member

fields to determine whether or not the message references

a valid Group and Member.

Note: Since this check is tantamount to demultiplexng a
message, it may be performed as part of that function.

Service: if the message is a BeginCommand, then check to

determine whether or not a valid SAPI is being requested.

Control field: check the Control field (if defined) of

each Command to determine whether or not the value is

valid for this Command type.

Status field: check the Status. field of each Response to

determine whether or not the value is valid for this

Response type.

If an error is detected in a message, the normal procedure is

-17

Message Formattivig and Filtering

to log the error in an error log, send, a Response (if any)

notifying the apposite CPI, and discard the message. There

are two excdeptions. First, if a message fails either the Size

or Type field checks, the CPI cannot trust any of the'

information in the HEADER to be correct. Therefore, the CPI

cannot determine what kind of Response to respond with.

Second, if the CPI detects an error in a Response, it cannot

send a Response to a Response. In either case, the CPI uses

the HFP Maintenance Service to notify the apposite CPI of the

error.

Note: since a CPI only communicates with only one other CPI
(and not with many), it is not necessary that all of the above
checks be made at all times. The checks for valid Service,
Control, and Status may be made during a testing phase of
operation and omitted during normal operation.

-a

Me ssage Formatting and, Filtering ..

Status Codes

Every ,Response contains a Status field whose value indicates

the success of or the reason for failure of the Command to

which it is a Response. The Status field value conventions

are:

a. zero indicates that the action initiated by the
Command was successful;

b. 1 to 31 indicate errors applicable to all Commands at
the channel protocol level;

c. 32 to 63 indicate errors specific to individual
Command types at the Channel Protocol level;

d. 64 to 255 are reserved for internal use within the
host and front end.

The codes common to all Responses are summarized below.

Status Meaning

0 Command was successful.

1 Channel non-existent: the Group and Member
fields of a Command (other than a
BeginCommand) referenced a channel machine
unknown to the receiving CPI.

2 Illegal state: a Command referenced a channel
machine which was in a state for which the
Command is an illegal input.

3 Command not implemented: a Command was
received whose Type is legal but not
implemented. Currently this can only be a
BeginCommand or an ExecuteCommand.

5 Message too long: the number of bits in the
Command exceeded the maximum permitted by the
receiving CPI.

6 Service access protocol message error: an,
error in the service access protocol message

19'--

Message Formatting and Filtering

contained in the TEXT field of the Command was

detected by the SAPI-.

7 Illeg-al Control f!ield value: the Control field
of the Command contained an undefined value.

The Status codes, specific to each Response are given under its

specification (see Commands and Responses).

-20-

Message -Mul-tiplexing and Demultiplexig

Message Multiplexing and Demultipleeing

Addressing Conventions

Each bi-directional service access connection is supported by

a single host to front end channel. Usually, many such

channels must be maintained over a single physical connection.

A number is therefore assigned to each channel to identify

it. It may be desirable to group channels (e.g., according to

service) and manipulate the group as a whole. For this

reason, the channel identifier is divided into two fields

called Group and Member. A channel number whose Member field

has the value zero refers to all channels of the group. The

channel protocol defines the following conventions for these

fields:

1) An End Command with Group not equal to zero and
Member equal to zero terminates all channels in the
specified group.

2) An EndCommand with Group equal to zero and Member
equal to zero terminates all channels between the
two apposite CPIs.

The Group and Member fields in a message HEADER are specified

to be large enough (12 and 16 bits, respectively) to allow an

installation to place all channels in a single group, to place

each channel in its own group, or to use the full power of the

two-dimensional channel address structure. A channel is

assigned its number by the CPI which initiates its

establishment. Since apposite CPIs refer to a particular

-21-

.

Message Multiplexing and Demultiplexing

channel by the same channel number, and because either CPI may

initiate channel establishment, name space conflicts must 'bh

avoided. This is accomplished by pre-assigning half the name

space to each end. The high order bit of the Group field is

used to distinguish the two ends. The host owns the half of

the name space with the high order bit of the Group field

equal to zero. The front end owns the half of the name space

with the high order bit of the Group field equal to one.

MultRlexing

The unit of multiplexing is the channel Orotocol message. All

messages from the channel machines and any that may be

generated by the filtering and demultiplexing functions are

passed to the multiplexor for multiplexing into the link

level's single data stream.

Demultiplexing

Messages received via the link level from the apposite CPI are

passed to the demultiplexor in accord with the state of flow

control at the link level interface. The messages are then

checked for correctness and consistency (see Message

Formatting and Filtering). If a message passes these checks,

the demultiplexor uses the Group and Member fields of the

message HEADER to determine which channel machine(s) the

22

Messag-e -MULtipl~ex, nq, and 'Demultiplexinj

message add'tesses . The message is then passed to Elie

indicated channel machines(s)'. if the m~~e is aV BeginCommand, a n~ew channel machtine -will 'be created to

process 'this request for a connection.,

Message Multiplexing and Demult'i plex ijg

HOST FRONT END

a ervice----------------- qeric
Access FO Accessa Service

CONTROL .

Channel----------------- Channel Transnort~

Iaiflk Li*nk Link

flost to F'ront lFnd Protocols

I Figure 4: CHANNEL PROTOCOL FLOW CONTROL POINTS

_______ -~24- ____

Transmission Control

Together, the channel and link protocols provide for duplicate-

I free, loss-free,, and error-free data exchange. The-exchange of

data between apposite CPIs may be either ordered with flow

control ("controlled transmission"), or unordered without flow

control ("uncontrolled transmission"). The link protocol

provides for error detection, and lost and duplicate message

detection. However, duplicate messages may be re-introduced by

retransmissions at the channel level. Duplicates thus introduced

are detected by the CPI and removed.

In addition to defining these functions for ensuring the

integrity of the data stream, the channel protocol also defines

the interaction between controlled and uncontrolled transmission,

and the flow control mechanisms for the individual channels.

Controlled Transmission Mechanisms

The channel protocol implementation provides a controlled data

stream to apposite SAPIs. The controlled data stream

preserves order (i.e., data is delivered to the receiving SAPI

in the same order in which it was presented by the sending

SAPI) and is flow controlled. Flow control mechanisms are

employed at three different points in the controlled data

stream between apposite SAPIs (see Figure 4). This threefold

flow control prevents a slow receiving SAPI from being overrun

by a faster sending SAPI. The channel level flow control also

- 25 -:i

Trabsmission Control-

helps to ensure fair-use-of the link-level rj. preventing any

single channel machine from flooding the multiplexor with

messages. The controlled transmission data stream is provided

via the Transmit Command and the Credit, Seqk and Ack fields

of other Commands and Responses and via the s ready and

ci ready channel interface events.

Credit: flow control between apposite channel machines is

provided by the receiver of TransmitCommands granting Credit

to the sender. Credit can be sent in any channel protocol

message (except Ehd_Commands and EndResponses). The Credit

field of a message contains the number of Transmit-Commands

the sender may send beyond the last message acknowledged. In

other words, the value of the Ack field added modulo 16 to the

value of the Credit field is the largest sequence number the

receiving channel machine is currently willing to accept. The

flow control mechanisms are described in greater detail in the

section on Flow Control below.

Sequence Numbers: order is preserved by assigning a unique

sequence number to each Transmit Command. Sequence numbers

are assigned in ascending order modulo 16. The sequence

numbers are the basis for ordering, duplicate detection,

acknowledgement, and flow control. "Each message type (except

BeginCommands) contains a Seq field. In messages other than

TransmitCommands, Seq specifies the sequence number of the

last Transmit Command sent by the sender of the message. In

BeginCommands the value of Seq must be zero.

- 26 -

a 'ransissi'on C6ntrol

Acks: delivery con fi rmat-ion of Transmift Cc; mnds is

accomplished via acknowledgements. Each message type (except

BeginCommands) contains an Ack field. An Ack is the sequence

number of the last TransmitCommand correctly received by the

receiving channel machine. The Ack confirms the delivery of

all messag~s with ,sequence numbers less than or equal to the

sequence number in the Ack field. In Begin_Commands, the

value of Ack must be zero. Arithmetic and comparisons on Acks

is done modulo 16, and, in order to avoid ambiguous

interpretatiQn of sequence numbers, a channel machine cannot

have more than eight unacknowledged messages outstanding.

Sending Queue: since the sending channel machine may send data

to its apposite faster than it can he accepted, flow control

is used to prevent the sender from flooding the receiver.

Therefore the sending channel machine has a queue for messages

waiting until flow control allows them LO be sent. Messages

from the controlled data stream are entered into this queue

first in first out (FIFO). Messages from the uncontrolled

data stream may or may not not be entered into this queue

according to a FIFO discipline (see Uncontrolled

Transmission) .

-27-

Transmission Control

Channel Interface Flow Control: a channel machine and an SAPI

communicate via the channel interface. Flow control must be

provided across this interface to prevent the SAPI from

flooding the channel machine and vice-versa. In the model of

the interface described in this specification, the s ready and

ciready events provide 'flow control across the channel

interface. The s ready event indicates to the channel machine

the number of citransmitc events the SAPI is able to accept.

Similarly, the ci ready event indicates to the SAPI the number

of s transmit c events the channel machine is able to accept.

Recivingg Queue: since the channel machine may send data to

the SAPI faster than the SAPI can accept it, flow control is

required across the channel interface. Therefore, the channel

machine has a queue for events waiting until the channel

interface flow control allows them to be sent to the SAPI.

Events from the controlled data stream are entered into the

queue first in first out (FIFO). Events from the uncontrolled

data stream may or may not be entered into this queue

according to a FIFO discipline. (See Uncontrolled

Transmission) .

2
~1- 28 -

Transmission-Cont rol

BLANK PAG6-E
-29 -

Transmission Control

left edge window .. right edge

duplicates -acceptable messages not yet acceptable

last Ackedi .Max acceptable

next message

Figure 5a: THE MOVING WINDOW MODEL

left edge , right edge

messages
-*received but-opq

not yet Ached
duplicates

C'cdLt extended

last Acksent)last SMax acceptable
last Seq received

Figure 5b: s window

,gog right edge

messages eCdit still
-4-sent but --- available-

not Ached

A

last Ach received _ Max to send
last S. sent

Figure 5c: r_window

30

Tranfsmission, ,'ohtroi'

Controlled Transmission Procedures

The Moving Window Model: the mechanisms used in the Channel

Protocol for preserving mess;age order, detecting duplicates,

and controlling data flow are based on the moving window

model. In this model, a window is seen to be sliding along

the sequence number line (see Figure 5a). Only messages whose

sequence numbers are within the window are acceptable.

Sequence numbers less than the left edge of the window denote

messages that have already been acknowledged. The left edge

itself denotes the sequence number of the last in-order

message received. The width of the window denotes the amount

of Credit currently extended to the sender, i.e., the number

of messages which the receiver is currently willing to accept.

Sequence numbers greater than or equal to the right edge of

the window denote messages that are not yet acceptable because

they are beyond the receiver's current ability to accept them.

For each direction of data flow, there are two windows (see

Figures 5b and 5c), one maintained by the sender (the

"s window") and one maintained by the receiver (the

"r window"). Data flow is controlled by the receiver. The

receiver's r window represents the receiver's image of the

state of the data flow: the last message acknowledged by the

receiver and the amount of Credit extended to the sender. The

sender's s window represents the sender's image of the

receiver's r window: the last acknowledged message and the

amount of Credit the sender has been notified of. Because of

-31-

Transmissioh control

1-4'

r ro

'Ia

* C)

(CE-4

10C

0 H

14z

L

_ _ _ I _ _ _

Transmission Control

messages in transit or messages lost, the sender's s window

may not agree with the receiver's rwindow.

Since data can flow in both directions, each channel machine

maintains both an r window and an s window (see Figure 6).

For a receiving channel machine's r window ("an RCM's

r window"), the left edge represents the sequence number of

the last acknowledgement sent to the sending channel machine

("the SCM"). The right edge of the RCM's r window is

computed by adding together modulo 16 the last amount of

credit extended to the SCM and the value of the left edge.

This gives the largest sequence number that the R CM is

currently able to accept. Since the RCM may receive several

messages before it can acknowledge the first, the RCM must

keep track of the sequence number of the last message it has

received. For an SCM's s window, the left edge represents

the sequence number of the last acknowledgement received from

the R CM. The right edge is computed by adding together

modulo 16 the Credit and Ack field of the last message

received from the RCM. This is the largest sequence number

that the SCM should send. Since the SCM may send messages

in advance of those that are acknowledged, the S CM must keep

track of the sequence number of the next message to be sent.

Duplicate Detection: duplicate Transmit_Commands may be

introduced into the controlled data stream by retransmissions.

If a Transmit Command arrives at the R CM with a sequence

number less than the value of the left edge of its r window,

-33-

Tansmission Control,

the Transmit_Command is a dupli'date. The duplicate is

discarded and the S CM is not notified.

Orderinq: Transmit Commands may arrive out-of-order due to

events at the link level or due to retransmissions. X1f a

TransmitCommand arrives with a sequence number more than one

greater than the left edge of the RCM's r window, the

TransmitCommand is out of order. The RCM may keep the

message if it has sufficient buffer space or it may discard

it. In either case, the RCM should send a TransmitResponse

to the SCM indicating that an out-of-order message was

received (Status = 35) and with the Ack field set to the value

of left edge of the RCM's r window. This will: cause the SCM

to retransmit all TransmitCommands from the sequence number

of the Ack field in the TransmitResponse to the sequence

number of the last message sent by the SCM.

Flow Control: flow control must be provided both at the

channel interface and between apposite channel machines. The

channel interface events sready and ci_ready are used to

control flow across the channel interface for a particular

channel. The sready event indicates to the channel machine

the number of ci transmit c events the SAPI is able to accept.

The ci ready event indicates to the SAPI the number of

s-transmitc events the channel machine is able to accept. It

is assumed that events are not lost between the SAPI and the

channel interface. The number of ci transmit c or

s transmit c events allocated by each additional sready or

-34-

-transmission- Cntrol

ci_ready event replaces the previous allocation.

Note: this particular channel interface model should not be
viewed as an implementation specification. The channel
interface model only specifies the properties that a channel
interface must have. Many mechanisms may satisfy these
properties.

When a channel machine receives a message from its apposite,

it uses the Ack and Credit fields to update its s window. The

left edge of the s window is set equal to the Ack field. The

right edge is set equal to the sum modulo 16 of the Ack field

plus the Credit field. The channel machine can now send

messages to its apposite as long as the sequence numbers

assigned are less than the value of the right edge of its

s window.

When a channel machine receives a TransmitCommand that is in

order and not a duplicate, it advances the left edge of the

r window by one (modulo 16). It acknowledges this message

(thereby acknowledging any others that have not been

acknowledged as well). No more than 8 unacknowledged messages

can be left outstanding. If the width of the r window is near

zero and the channel machine has sufficient allocation to pass

data on to its SAPI, additional Credit should be extended to

the sending channel machine.

Communicating Flow Control Information: although the

controlled data stream consists solely of Transmit_Commands,

other channel protocol messages carry flow control

information. This section provides a table of the values of

- 35 -

Transmission Control

the Seq, Ack, and Credit fields in these messages.

BeginCommand Seq: field' used for Service Code

Ack: field used for Service Code
Credit: specifies the initial credit

to the receiver

Begin_Response: Seq: zero
Ack: zero
Credit: specifies the initiaJ credit

to the receiver

Execute Command: Seq: specifies the sequence number
of the last TransmitCommand
sent

Ack: specifies the sequence number
of the last in order
TransmitCommand correctly
received

Credit: specifies the new credit
value

Execute-Response: Seq: specifies the sequence number
of the last Transmit-Command
sent

Ack: specifies the sr.quoence number
of the last in order
Transmit Command correctly
received

Credit: specifies the new Credit
value

Transmit Command: Seq: specifies the sequence number
of this TransmitCommand

Ack: specifies the sequence number
of the last in order
Transmit Command received
correctly

Credit: specifies the new credit
value

TransmitResponse: Seq: specifies the sequence number
of the last TransmitCommand
sent

Ack: specifies the sequence number
of the last in order
Transmit Command received
correctly

Credit: specifies the new Credit
value

EndCommand: Seq: specifies the sequence number

4- 36 -

- Transmri-ssIon- ;Control

of the last TfansmitCommand
sent

Ack: specifies the sequence number
of the last Transmit Command
correctly received before the
channel was terrinated

Credit: irrelevant

EndResponse: Seq: specifies the sequence number
of the last TransmitCommand
sent

Ack: specifies the sequence number
of the last Transmit Command
correctly received be-ore the
channel was terminated

Credit: irrelevant

-37-

Transmnission; ,Control

00

0 C
U H

-4 E-4

0 0

H

-J-Iz
Cd

E-

'-4 z

41

C C4

38C

Transmission Control

Uncontrolled Transmission

The channel protocpl implementation provides an

uncontrolled data stream to apposite SAPIs. The

uncontrolled data stream does not guarantee that order will

be preserved, nor does it provide flow control. The

uncontrolled data stream provides a means to expedite data

transfer with respect to the controlled data stream. in

addition, an "attention" to interrupt the SAPI can be

associated with the expedited message. The uncontrolled

data stream also provides a means to synchronize delivery

of data in the uncontrolled data stream with the controlled

data stream. Similarly, an attention to interrupt the SAPT

can be associated with the synchronized message. The

uncontrolled data stream is provided in the channel

protocol by the ExecuteCommand and the ExecuteResponse.

Figure 7 shows the interaction between controlled and

uncontrolled transmission.

fExkedited Data Flow: an ExecuteCommand may be sent with

the Synchronize bit of the Control field set to zero. In

this case, delivery of the ExecuteCommand is expedited.

This means that the ExecuteCommand is placed at the head

of the Sending Queue for delivery to the link level. When

the Execute Command arrives at the receiving channel

machine its TEXT is placed at the head of the Receiving

Queue for delivery to the SAPI.

Note: Whether or not ExecuteCommands are expedited by the

- 39 -

V
Transmission Control

link protocol implementation depends on the facilities
provided by the link protocol.. The channel protocol does
not require that the link lvel provide this facility;
however, it would be useful if ava.i-lable.

The Attention bit of the Control field of an expedited

Execute Command may be set to one. If the Attention bit is

set, the receiving channel notifies the SAPI via an

attention or an interrupt when the TEXT of the-

ExecuteCommand is placed at the head of its the Receiving

Queue. The attention or interrupt is a special signal to

the SAPI notifying it of important data waiting to be

processed. If the Attention bit is set to zero, the

channel machine places the TEXT of the Execute Command at

the end of its Receiving Queue and sends no attention to

the SAPI. In this case the Execute Command is synchronized

(see below).

S nchronized Data Flow: an ExecuteCommand may be sent with

the Synchronize bit of the Control field set to one. In

this case, the sending channel machine places the

ExecuteCommand at the end of its Sending Queue for

delivery to the link level. The ExecuteCommand is sent to

the apposite channel machine in the normal course of events

and is not expedited. When the apposite channel machine

receives the Execute Command, it places the TEXT at the end

of its Receiving Queue. If the Attention bit is set to

one, it immediately notifies the SAPI by an interrupt or an

attention that important data is waiting to be read. The

-40-

Trahsmissi6n Control

SAPI should process the queued data as quickly as possible

in order to receive the TEXT of the Execute Command and act

on it.

Note: The effect of the Attention bit is not propagated
ahead of a synchronized Execute Command until it reaches
the Receiving Queue. If such an effect is to be achieved,
the sending SAPI should cause its channel machine to first
send a synchronized Execute Command with the Attention hit
set, and then to -send an expedited Execute Command with the
Attention bit set. This will cause an attention to be
propagated ahead of the synchronized ExecuteCommand

Termination

Channels may be terminated in two ways: flushing and non-

flushing. A flushing termination causes all queued data to

be discarded and causes the channel machine to enter a

terminating state. A non-flushing termination allows all

queued data to be sent before causing the channel machine

to enter a terminating state.

Flushing Termination: when a channel machine is requested

x to perform a flushing termination, it discards all queued

data in both the Receiving and Sending Queues and sends an

EndCommand. Any data tht arrives after the EndCommand is

sent is discarded. When the EndCommand arrives at the

apposite channel machine, all data in its Receivinq Queue

is discarded and the SAPI is notified by a channel

interface event.

- 41 -

Zransmission Control

Non-,flushing Termination: when a channel machine is

requested to perf6rm a non- flushing termination, the

chanhel machine discards all data that was queued in its

Receiving Queue for the SAPI, and enters an End Command at

the end' of its Sending Queue. Any datai that arrives after

the End Command has been entered in the Sending Queue is

discarded. When the last Transmit Command is sent, the

channel machine then sends the EndCommand and- enters a

terminating state. When the EndCommand arrives at the

apposite channel ma-7hine, i-t is placed at the end of the

Receiving Queue. The EndCommand is not acted upon until

the last data has been delivered to the SAPI.

Non-Flushing End Deadlock Avoidance

Both of the apposite SAPIs using a virtual channel can

simultaneously request non-flushing termination of the

channel. Each channel machine must withhold sending the

EndCommand until the data which it has queued for sending

to the other drains out. A deadlock will occur if neither

channel machine can drain its Sending Queue of data for the

other. This deadlock can be avoided by the following

procedure.

If a channel machine is requested to perform a non-flushing

termination, it shall:

-42 -

Transmission Control

1) discard all data queued in its Receiving Queue for
the SAPI that requested the non-flushing
termination.

2) continue to extend Credit to its apposite CPI
(this allows its apposite to drain its Sending
Queue of data toward it); and

3) if the channel machine does receive
TransmitCommands from its apposite, it shall
acknowledge and discard them (since the SAPI has
requested termination, the data need not he passed
to it).

If the above procedure is followed, both of the apposite

SAPIs may request non-flushing termination without a

deadlock occurring.

-43-

I i Transmission Cobtr-ol

JI

BLANK PAGE
44

Notation and Nomenclature Conventions
for the

Channel Protocol

Notation

States: all stat hames are printed with all capital letters. If
the state name consists of two or more wo-Ils, the words are

separated by an t 1:_rqcore (_). Examples: NULL, SENDER PENDING.

Commands: all Command names are of the form:

<command name>_Command

where <command name> is one of the following:

Begin
End
Execute
Transmit

The first letter of each word is capitalize.

Examples: BeginCommand, EndCommand.

Responses: all Response names are of the form:

<response name>_Response

where <response name> has the same range as <command name>. The

first letter of each word is capitalized.
Examples: Begin_Response, End_Response.

Events: all names of events caused by the SAPI are either of the

form:

s_<interface event name>_<event suffix>

where <interface event name> is one of the following:

begin
end
execute

- 45 -

transmit

and <-event suffix> is either

c indicating a Command-
or r indicating a Response

or of the form:

s <interface event name,>

where <interface event name> is one of the followinq:

identify
ready
status

All names of events caused by a channel machine are either of the
form:

c_<interface event name> <event suffix>

where <interface event name> is one of the following:

begin
end
execute
transmit

and <event suffix> is the same as above

or of the form:

c <interface event name>

where <interface event name> is one of the following:

accept
ready
reject
status

Event names are all lower case. Examples: s beginc, c_beginc,
s_ready, c-status.

- 46 -

Nomenclature

Valid/Invalid: an invalid Command or Response is one that has
failed to pass one or more consistency checks performed by the
CPi. Most invalid Commands and Responses are detected by the
multiplexor/demultiplexor and are handled at that time.
Transmit Commands may arrive out-of-order or may be outside the
flow cointrol window. These are also handled by the channel
machine and are described in the state table.

Acceptable/Unacceptable: the channel machine checks events for
consistency and accepts or rejects them via the caccept or
c_reject events.

Status 0: indicates that the Command corresponding to this
Response was not successful. It indicates that the attempt to
establish a virtual channel has failed.

Status = 2: indicates that the channel machine was not in a legal
state to receive the Command corresponding to this Response.

Status = 39: indicates that the channel machine was in the
SENDER DRAINING state and discarded the Command corresponding to
this Response.

Flushing/Non-Flushin: channels may be terminated in two ways:

Flushing: any data queued for transmission is discarded at
the time the termination is requested.

Non-Flushing: the termination request is not acted on until
all data queued for transmission has been sent (see
Termination).

Log the error: if the channel machine detects an error, the error
and any other diagnostic information should be written on a
permanent file. In some cases, the error may be reported to the
HFP Maintenance Service.

Channel Machine States

NULL: a channel machine in this state does not have an active
channel.

SENDER PENDING: a channel machine in this state is attempting to
establish a channel. It has sent a Begin Command and is waiting
for a Begin_Response.

- 47 -

RECEIVER PENDING: a channel machine in this state has received a

Begin Coinmand and is waiting, for the s beqin_r event 'from the

SAPL

SENDER TAKING 'BACK: a dhannel machine in 'this state has been
requested to terminate the channel while it was in the

SENDER PENDING state and has sent an End Command before it has
received the Begin_Response.

RECEIVER TAKING BACK: a channel machine in this state has

received an EndCommand while it was in the RECEIVER PENDING
state before the SAPI has responded to the cbegin c event.

E STABLISHED: a channel machine in this state has established a
!dhannel with its apposite.

SENDER DRAINING: a channel machine in this state has been
requested to terminate the channel without flushing any data.

The channel machine is sending all queued Transmit Commands
before sending the En& Response.

RECEIVER DRAINING: a channel machine in this state has receive; a
non-flushing End Command and is waiting until the SAPI has read

all of the data queued for it before sending the End_Response.

SENDER TERMINATING: a channel machine in this state either

1) has been requested by the SAPI to terminate the channel
and flush any data not yet sent, or

2) has been in the SENDER DRAINING state, has sent the last
TransmitCommand, and has also sent the EndCommand.

RECEIVER TERMINATING: a channel machine in this state either

1) has received a flushing End Command and is waiting for
an s end r event from the SAPI, or

2) has been in the RECEIVERDRAINING state, has passed the
last c transmit c event and the c end c event to the

SAFPe, and is now waiting for the sendr event.

- 48 -

COMMANDS AND RESPONSES

COMMANDS AND RESPONSES

Introduction

The following section defines the channel protocol commands and
Responses. For each Command and each Response,, there is a
presentation of:

1. its function,

2. when it is sent,

3. the sending channel machine's state table for it,

4. the receiving channel machine's action upon receiving it

a) in the normal case and
b) in case of error,

5. the receiving channel machine's state table for it,

6. any subsequent action by the receiver

a) in the normal case and
b) in case of error,

7. any subsequent action by the sender

a) in the normal case and
b) in case of error,

8. the semantics of the fields of the HEADER for this
Command or Response, and

9. the semantics of TEXT for this Command or Response.

The conventions followed in the state tables are given in the

section entitled "Notation and Nomenclature Conventions for the
Channel Protocol."

_ __- 49-

BLANK PAGEh
-50----

Begin-Command

Function

A BeginCommand is used by a channel machine to request its
apposite to join it in establishing a host to front end
channel.

When sent

When an acceptable sbegin_c event has been caused by an
SAPI, the channel machine sends a BeginCommand.

Sending States

-- - - -- - - - -- - - - - - - --I- - - - - - - - - - - - - - - -I -- - - - - -- - - - -
I CURRENT STATE INPUT NEXT STATE OUTPUT I COMMENT
I (SUB-STATE)

--------- ---------- ------------------- ----------------------I
I -- - - - -- -

NULL acceptable SENDER c accept initialize channel
s_begin c PENDING Begin Cor,,'nand machine

Action when received

In the normal case: a channel machine receiving a
Begin_Command is in the NULL state. The channel machine then
causes a cbeginc event in order to notify the SAPI specified
by the Service field of the BeginCommand that a channel to it
has been requested and to pass to it the TEXT field of the
Begin Command. The channel machine then enters the
RECEIVER PENDING state.

In case of error: the channel machine logs the error (see HFP
Maintenance Service), discards the message, and sends a
Begin_Response with the Status code proper to the error (see
Status codes for the BeginResponse, below).

-51 -

7,eginCommand

Receiving S tates

---------- ---------- ----------- --------------------- ---------------------- I
CURRENT STATE INPUT NEXT STATE OUTPUT COMMENT

(SUB-STATE)

NULL va1id RECEIVER c begin c initialize channel
Begin-Command PENDIN7C machine

Subse uent actionb heeee

In the normal case: an s_begin_r event with Status = 0 is
caused by the SAPI in response to the clbegin c. The channel

machine then sends a BeginResponse with Status = 0 and enters
the ESTABLISHED state.

En case of error: an s_begin_r with Status 0 event is caused
by the SAPI. The channel machine then sends a Begin_Response
with Status 0 and enters the NULL state.

Subsequent action by the Sender

In the normal case: the channel machine, having sent a
Begin Command, waits for a BeginResponse. If the channel
machine receives a BeginResponse with Status = 0, it then

notifies the SAPI by causing a c_begin_r event with Status =0
and enters the ESTABLISHED state.

in case of error: if the channel machine having sent a

BcgnCommand receives a Begin_Response with Status 0, it
notifies the SAPI of the error via a c_hegin_r event with

Status d 0 and enters the NULL state.

Takint back: An SAPI having requested the channel machine to
establish a channel may, via an s end c event, request the
channel machine to terminate the channel before it receives

the expected BeginResponse. In this case, the channel

machine then sends an End Command and enters the
SENDERTAKING ACK state.

i I ; _ _ - __

I

tI -52 -

.cl-omn reevsaBgnRsos ihSau ,i

Begin Commahd

Semantics of fields

Type: 0 specifies Begin.

C/R: 0 specifies Command.

Credit: specifies the number of Transmit Commands the sending
channel machine is prepared to accept (see Transmission
-Control). Its value may be zero.

Service: specifies the SAPI to which the channel is to he
established (see Message Multiplexing and Demultiplexing).

Group and Member: specifies the channel that is -to be

established.

Control: is currently undefined for the Begin Command.

Semantics of TEXT

TEXT contains the service access protocol message.

5

1- 53 -

BeginResponse

BeginResponse

Function

A Begin-Response is used by a channel machine either- to
indicate the successful establishment of a host to front end
channel as requested by its apposite or to indicate the reason
for failure.

When Sent

When an acceptable s_beginr event has been caused by an SAPI,
the channel machine sends a Begin_Response.

Sendin States

CURRENT STATE INPUT I NEXT STATE OUTPUT COMMENT

(SUB-STATE) I

RECEIVER acceptable ESTABLISHED c accept
PENDING s begin r Be in Response

(Status=O) (Status=M)

RECEIVER acceptable NULL c accept
PENDINU s begin r Begin Response

(S§tatus/M) (ttsS

-- -- - - - -- .- -------------------.

RECEIVER acceptable NULL c-accept

TAKING-BACK s begin r Begin Response
(Status:B) I (StatusXO)

----- ---------------- ------------------- --------------- I--------------------- ---------------------- I
Action When Received

In the normal case: a channel machine receiving a
BeginResponse with Status = 0 is in the SENDER PENDING state.
The channel machine then causes a c begin r event with Status
= 0 in order to notify the SAPI that-the channel has been
established and to pass to it the TEXT field of the
Begin_Response. The channel machine then enters the

ESTABLISHED state.

In case of error: if a channel machine receiving a
BeginResponse with Status 7 0 is in either the SENDER PENDING
state or the SENDER TAKING BACK state, it causes a c begin r
event with Status- 0 in-order to pass the TEXT field of the
BeginResponse to the SAPI and enters the NULL state; if a
channel machine receiving a BeginResponse with Status = 0 is

- 54 -

BeginResponse-

in the SENDE'RTAKINGBACK state, it takes no action and does
not change state; if a channel machine receiving a
Begin Response is in neith~r the SENDER PENDINJG state nor the
SENDERTAKING_-BACK state, it logs- the error (see T-FP
maintenance Service) but does not change s-tate; if an
inconsistency in, the 'BeginResponse has been detected, the

filter logs 'the err-or (seMessage Formatting and Filterilng,
HFP Maintenance Service).

Receiifl. States

-- - - -- - - - -- - - - - - - - - -- - - - - - - - - - --- - - - - - - - - - - - - - - - -
ICURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMFNT
I (SUB-STATE) II
--------I------------------ --------------- --------------------- ---------------------- I

ISENDER Ivalid IESTABLISHED c cbegin rIII PENDING IBeginResponse 69 (tatus=-R)
I I (Status0o)I

I SENDER Ivalid INULL Ic begin r ----- I
I PENDING IBegin Response II(Status70)
I I ~(status0)I I

I SENDER Iinvalid ISENDER I c begin r Ilog the errorI
I PENDING IBegin-Response I TERMINATING I (S§tatus70)II

II End Command
I I II (flushing)

-- --- - -- - -- - I -- - - - - -- - - - - -- - - - -
-- - - -- - - I I -- - - - - - -I-- - - -

SENDER Ivalid I------
I TAKING BACK IBegin ResponseI
I I (Statu6s-0)I

I SENDER_ I valid I NULL Ic begin rII
I TAKING-BACK Begin Response I (tatus~CJ)I
I I (Statis/0)

Iany other I Begin Response I------IIlog the errorI
I state I (valid orIII
I I iInvalid) I

Subsieq .nt Action by the Receiver

In the normal case: the channel machine exchanges data with
its apposite.

In case of error: none if the channel machine had been in
either the SENDERPENDING state or the SENDERTAKINGBACK
state; had it been in any other state, it logs the error but
does change state.

-55

BeginResponse

Subsequent Action by the Sender

In the normal case: the channel machine exchanges data with
its apposite.

In case of error: The channel machine returns to the NULL
state.

Semantics of' Fields

Type: 0 specifies Begin.

C/R: 1, specifies Response.

Credit: specifies the number of Transmit Commands the sender
of the Begin_Response is prepared to accept (see Transmission

Control). If there was an error, the content of this field is
irrelevant.

Seg: is zero. If there was an error, the content of this
field is irrelevant.

Ack: specifies zero as the sequence number of the last message
correctly received. If there was an error, the content of
this field is irrelevant.

Group and Member: specifies the channel which the
Begin_Command requested to be established.

Status indicates the success or failure of the attempt to
establish the channel. The following Status codes are
applicable to the Begin_Response:

Status Meaning

0 Command was successful.

1 Channel non-existent: the Group and Member
fields of the Begin Command referenced a
channel machine unknown to the receiving CPI.

2 Illegal state: the Begin_Command referenced a
channel machine which was in a state for which
the Begin Command is an illegal input.

3 Command not implemented: the BeginCommand is
not implemented by the receiving CPI.

Message too long: the number of bits in the
BeginCommand exceeded the maximum permitted
by the receiving CPI.

56

BeginResponse

6 Service access protocol message error: an
error in the service access protocol message
contained in the. TEXT field of the
BeginCommand was detected by the SAPI.

32 Channel in use-: the channel referenced in the
Begin_Command was already assigned (i.e., not
in the NULL state).

33 Service not implemented: the Service field in
the Begin Command specified an SAPI not
implemented at the receiving site.

34 Insufficient resources: the receiver of the
BeginCommand did not have sufficient
resources for establishing the host to front
end channel.

37 Bad channel polarity: the high-order bit of
the Group field in the Begin Command had the
wrong value.

38 Service not operational: the Service field in
the Begin Command specified an SAPI which is
implemented at the receiving site but which is
temporarily unavailable.

Semantics of TEXT

TEXT contains the service access protocol message.

- 57 -

EndCommand

End Command

Function

An End Command is used by a CPI to request its apposite CPI to
join it in terminating a host to front end channel, a group of
channels, or all channels.

A CPI sending an EndCommand has two options:

1. it may request that the channel(s) be terminated
immediately ("flushing termination");

2. it may request that the channel(s) be terminated
only after any data queued by its apposite CPI has
been passed on to the apposite CPI's SAPI(s) ("non-
flushing termination").

(For further discussion also see Termination.)

When Sent

When an acceptable s end c event has been caused by an SAPI,
its CPI sends an EndCommand.

- 58 -

EndCommand

Sending States

----------- ------------- ---------- ----------------- ----------------------I
CURRENT STATE INPUT INEXT STATE IOUTPUT COMMENT

INDERL acceptable I SEDR acceptI
I~ ~ PEDN end c (fuhnr AIGBC nd Command

I o nonfl shn g)ce I (flushing)

-- - - -- - - - -- -- -- -- I -- -- --
ISENDER accenv l e SENDER Ic bceipt lgte ro

I EDO s enI fuhng AIGBC End CommandI
I 7 Ionfusi (fluishing)

SEDE ina i I SEDRI ei I loIh ro
I REEVEDIacpa I Bei-esos NU RMINA I C actsI

I PEDING I sndc fluhingI IEnd Command
I I r ca-fluhing I I(flushing)I

R ECEIER I acceptable I---------- C acceptI
I TAKIN BA Isendc (flushing I i Ed CommandI

II or non-flushing) I I(flushing)

S ECEDER I acceptable ULIcaccept
I TAKING BACK Is end c (flushing IIEnd CommandI

or no-i-flushing) II (flishing)
-- - - - - --- I- I -- - - - -- - - - - -- - - - - -

REESIVE- I acceptable I SNDEL c caccept Idsadayqee
TAIGBC I s end c (ls ing RIATN End Command Idt

1I0 nonus luin i) g I I (flushing)I

I ETABLISHED Iacceptable ISENDER c caccept Idiscard any data I

s Cend I c En CommandIN (non-m n dat
(h sig I (fflusnh)atindg)

f ~ --- -- --- -- I I
ESTABLISHED I acceptable ISENDER_ I c_accept Idiscard any data I
I (with not I s end c (non- D TRINANG En Com d(o- I queued for S3APi;

quate eu d Ifluhlng) sen akodgea tuo
I apposite I appomsite CP;ol

I DRI)IN En Comn enc(TnMoTIGn-d omnddt
I~~~lus o at (flshng of fusig

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~cnweg buDRt(cnoldeetISEDR IEdCmmn nn
------ DR----I--ING-- ------- of-ls--Trasmi---ERMNATN---f-shig)-

I ECTA[ISED acceptable I SNL R C caccept I discard any queeta
(wt DA nN s send c (flsn- I I-NT-N End Command (o- I data orSAT
data orue fl hiongfuhig I fluhing) I acnweI u
for I dicr an Ino iq

I IOo t messages

ISENDER I acceptable S----------- Cacceptdicran ute
I TRINING I s end c TElushinING I End Command data

I I or noflsnin) I (flushing)I
jI -- - - - - - - - - -- - - - - - - -- - - - - - - - - -I-- - - - - - - - - -

SENTERIATN I sacenowldgemeng SENDE End Command(n -
DR1IC I or non-fTrusig) I EMNTN I flushing)

II Co m n I I

QEEVI I acetbeNL- cetdsadayqee

IEnd Command

Action When Received

In the normal case: a channel machine receiving an End Command
isin -- either- theSENDER PENDING state, the ESTABLISHED state,

the SENDER DRAINING state, or the SENDER TERMINATING state.

If the End Command specifies a non-flushing termination, the
channel machine first waits until any data queued for the SAPI
has been read by the SAPI (see Non-Flushing End Deadlock

Avoidance). If the End Command specifies a flushing
termination, the channel machine discards any data queued for

the SAPI. The channel machine then causes a c end c event in
order to pass the TEXT field of the End Command To the SAPI.

The channel machine then enters the RECEIVER TAKING BACK state
if it had been in the RECEIVER PENDING -tate, the

RECEIVER TERMINATING state if it had been in the

RECEIVERDRAINING state, or the NULL state if it had been in
the SENDERTERMINATING state.

In case of error: the channel machine logs the error (see HFP
Maintenance Service) , discards the message, and sends an

EndResponse with the Status code proper to the error (see

Status codes for EndResponse, below).

-60-

EndCo.mmand,

Receiving States

-- -- -- - - - -- - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - -
CURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE) IIII

INULL IEnd Command I-------iEnd-Response I discard the message I
I I (valid or I
II Iinvalid, flushing I II
II or non-flushing) II

-- - - - - - - - -- - - - - - - - - I II_ - - - - - - - -
II -- - - - - - - -- - - - - - - - - -

I SENDER IEnd Command I NULL c cend_ c
I PENDI-NG I(valid or IIEnid Response

I Iinvalid, flushing I
I or non-flushing) III

III -- - - -- - -
IRECEIVER Ivalid End-Command IRECEIVER c cend-c
I PENDING U TAKINGBACKI

-- II -- - - - - - - - - -
-- - - - - - - - - - -- - -- - - - - -I I - - - - - - - - - - -
I RECEIVER Iinvalid INULL I c end ~.Ilog the error
I PENDING IEnd-Command II End ResponseI

-- - - -- - - - I -- --
I SENDER Ivalid End-Command INULL Ic end c
I TAKINRG BACK G ~d RejsponseII

IRECEIVER Ivalid End Command I NULL c cend cI
I TAKING-BACK II I End IResponse

--- -- - - - - - - - - -- -- - -- -- -
-- -- -- -- - I -- - - - - - - - - - -- - - - - -- - - - -
I ESTABLISHED Ivalid End Command IRECEIVER I c end c Idiscard any data I

(flushing) TERMINATING IIqueued for SAPI and I
I III for apposite CPT

----------------------- --------------- --------------------- ----------------------I

I ESTABLISHED) valid End _Command IRECEIVER IIdiscard any data I
I (with data I (non-flushing) I DRAINING IIqueued for apposite I
I queued for I IIICPI; place c end c i
I SAPI) IIIIat end of re;ceive

I I Iqueue; acknowledge
I I I hut discard any I

I I I Iincoming messages I

--------- ----- ------------- - - - - - -
I -- - - -- - - I -- -

I ESTABLISHED I volid End Command IRECEIVER I c -end -c Idiscard any data
I (with no I (non-flushing) I TERMINATING I - queued (or apposite I
I data queued I I ICPI; acknowledge but I
I for SAPI) I IIIdiscard any Incomingq I

I I I Imessages

I -- - - - - - - - - -- - - - - - - - - -- - - - - - - - - --- - - - - - - - - -

I ESTABLISHED I Invalid INULL c cend c Ilog the errorI
I I End Command I In Response

I (flushing or I II
I non- flIush ing) I

------ "--- ---------- ------- ------------------ -------------------
I SENDER I valid End Command I NULL c Cend c I 1hsaard any data I

I DRAINING I (flushing) I E6dResponseI queued------------------- ------- --------------- ----------------------
IRECEIVER_ valid End Command IRECEIVER c cend c I discard any data I
I DRAINXN (fIu siIng) I TERMINA TING IIqueued

-- -- - -- -- - III
ISENDER Ivalid End Command I NULL c cend cI
I TERMINATING I(flushing-or III

I I ~non-flushing) IIII

------- --------------- --------------------- ----------------------I

I SENDER Iinvalid I NULL c cend c I log the errorI
I TERMINATING IEnd-Command IIEnd ResponseI

I ------------- --------------- ---------------------- ----------------------I

I RECEIVER I valid End Command I NULL c cend cII
I TERMINATING I (flushing-or II End ResponseI

II non-flushing) I I
-- - - -- - - - II-- - - - - - - - - - - - - - - I -- - - - - - - - - - -- - - - - -- - - - -

- 61.

End Command

Subsequent Action by the Receiver

In the normal case: a s_ end r event with Status = 0 is caused
by the SAPI in response to the C end c event. The channel
machine then sends an End Response with- Status = (0 and enters
the NULL state.

In case of error: a send r event with Status 3 0 is caused by
t-he SAPI.The channel machine then sends an End Response with

Status 3 0 and enters the NULL state.

Subsequent Action by the Sender

In the normal case: if a non-flushing termination was
specified, the channel machine continues to acknowledge

Transmit Commands, to extend flow-control Credit, to act upon
any flow-control information contained in in-coming Commands

or Responses, and to discard any incoming Commands or
Responses until it receives an EndCommand or an EndResponse.

In case of error: the channel machine notifies the SAPI of the
error via a c end r event with Status 0 which passes the
TEXT field of the End Response to the SAPI. The channel
machine then enters the NULL state.

Semantics of Fields

Type: 4 specifies End.

C/R: 0 specifies Command.

Credit: is irrelevant.

Seq: specifies the sequence number of the last

TransmitCommand sent by the sender of the EndCommand.

Ack: specifies the sequence number of the last
Transmit Command correctly received before the channel was

terminated.

Group and Member: specifies the channel(s) to be terminated.
If Group is not zero and Member is zero, all channels with the
same Group are to be terminated. If both Group and Member are

zero, all channels are to be terminated. The latter option is
intended as part of the restart sequence (see Initializing
Host - Front End Communication).

Control The Control field bits have the following meanings:

- 62 -

EndCommand

Flush away: (bit 1 = 1) means immediately flush data
which is queued going away from the sender of the
EndCommand and terminate the channel. If this option
is not requested (i.e., if bit 1 = 0), the End Command
is not to take effect until all data queued going away
from the sender of the EndCommand has been processed in
the normal manner.

Semantics of TEXT

TEXT contains the service access protocol message.

-63-

lj itna_esponse

End_Response

Function

An EndResponse is used by a channel machine to acknowledge to
its apposite that a channel, group of channels, or all
channels have been terminated as requested by its apposite.

When Sent

When an acceptable s endr event has been caused by an SAPI,
its CPI sends an EndResponse.

- 64 -

fnio tiesponse

Sendin9 States

- - - - - - - -- -- - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - -
CURRENT STATE INPUT NEXT STATE OUTPUT COMMENT I

(SUB-STATE) I--------- ...-
I NULL acceptable c accept

s end r (from HFP E5d Response
Maintenance

I Service)

-- -- - - - - -I -- ---- ----- ---- ---- -- --
II -- - - - - - - - - -- - - - - - - -- - - - -- - - -NULL End Command End Response I discard the message

(vaTid or
invalid, flushing

I or non-flushing) I

SENDER End Command NULL c end c
PENDING (vaTid or EidResponse

Invalid, flushing
or non-flushing) I

RECEIVER invalid NULL c end c log the error
PENDINU End-Command EdResponse

SENDER I valid End Command I NULL c end c
TAKING BACK I I End Rsponse

-- -- - -- -- - I -- - - - - -- - - - -
RECEIVER acceptable NULL c accept
TAKING BACK s end r End Response

---------------- ----------------- -------------- ----------------I
IIII -- - - - - -- - - - -

RECEIVER valid End Command NULL c end c
TAKING7BACK E~dR"sponse

ESTABLISHED Invalid NULL c end c log the error
End Command End Response
(flushing or
non-flushing)

-- - --- --- --- I I
I -- - - - - - - - - -- - - - - - - --- -- - - - - - - - - - - - - - - - - - -

SENDER I valid End Command NULL c end c discard any data
DRAINING I (flushing) EndResponse ai eued

SENDER invalid NULL c end c log the errorTERNINATING Cnd Command E~d Response

RECEIVER acceptable NULL c acceptTERMINKTING s end r EndResponse

RECEIVER valid End Command NULL c end c
TERMINTTING (flushing-or I End Response

non-flushing) I I

- 65 -

Action When Received

In the normal case: a channel machine receiving an
End Response is in-either the SENDER TAKING BACK state or the
SENDER TERMINATING state. The channel machine then causes a
c end r event in order to pass to the TEXT field of the
End Response to the SAPI. The channel machine then, enters the
NULL state,

In case of error: the channel machine is to log the error (see
HFP Maintenance Service) and, if appropriate, cause a c end r
event in order to pass the TEXT field of the End_Response to
the SAPI. In either case, the channel machine then enters the
NULL state.

Receivin States

I CURRENT STATE INPUT I NEXT STATE OUTPUT COMMENT
(SUB-STATE) I

NULL End Response I-..... discard the message

I _ II

SENDER valid NULL c end r
TAKINGBACK End Response

SENDER valid NULL c_end r
TERMINATING End Response

any other End Response I log the error
state I (valid or

I invalid)

-- - - -- - - - I -- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -

Subsequent Action by the Receiver

In the normal case: none.

In case of error: none.

Subsequent Action by the Sender

In the normal case: none.

In case of error: the channel machine logs the error and
enters the NULL state.

- 66 -

EndResponse

Semantics of Fields

Tye:. 4 specifies End.

C/R: 1 specifies Response.

Credit: is irrelevant.

Se: specifies the sequence number of the last
TransmitCommand sent by the sender of the End_Response.

Ack: specifies the sequence number of the last
T-ransmitCommand sent by the sender of the End_Response.

Group and Member: specifies the channel(s) referenced in the
EndCommand.

Status: indicates whether or not an error has been
encountered. The following codes are applicable to the
EndResponse:

Status Meaning

0 Command was successful.

1 Channel non-existent: the Group and Member
field of the End Command referenced a channel
machine unknown to the receiving CPI.

4 Option not implemented: a Control field option
was specified in the End Command which is
legal but not implemented by the receiving
CPI.

5 Message too long: the number oE bits in the
End Command exceeded the maximum permitted by
the receiving CPI.

6 Service access protocol message error: an
error in the service access protocol message
contained in the TEXT field of the EndCommand
was detected by the SAPI.

7 Illegal Control field value: the Control
field of the EndCommand contained an
undefined value.

- 67 -

EndResponse

Semantics of TEXT

TEXT contains the service access protocol message.

- 68 -

txecute Command

Execute Command

Function

An Execute Command is used by a channel machine to effect the
transfer of data over a channel to its apposite without the
guarantees of flow-control and order provided via
Transmit Command (see Overview, Transmission Control).

Al SAPI requesting a channel machine to send an
ExecuteCommand has three options:

1. it may request that the Execute Command be delivered
asynchronously vis-a-vis the flow-controlled, in-
order data stream,

2. it may request that the ExecuteCommand be delivered
in synchronization with a specified point in the
flow-controlled, in-order data stream;

3. in either case, it may request that the
ExecuteCommand carry with it a request that its
apposite SAPI be notified of its arrival.

When Sent

When an acceptable s execute c event has been caused by an
SAPI, the channel machine sends an Execute Command.

Sending States

CURRENT STATZ INPUT NEXT STATE OUTPUT COMMENT
(SUB-STATk.)

ESTABLISHED acceptable c accept I place

s execute c Iiecute Command I xecute Command at
(ynchronlze) end of send queue

--II -- - - - - - - - - - - - -- - - - - - - - - - - - - II
ESTABLISHED acceptable c accept I place

s execute c Execute Command I Execute Command at
I (expediteT I head of-send queue

- 69 -

Execute Command

Action When Received

In the normal case: the channel machine receiving an
Execute Command -s in the ESTABLISHED state. If the
Synchronize bit is not set, the channel machine then causes,

I1 at the earliest opportunity, a c execute c event in order to
pass the TEXT field of the Execute Command directly to the
SAPI, i.e., ahead of any other data queued for it. If the
Synchronize bit is set, the channel machine will deliver the
Execute Command at the point in the data stream where it was
received. If the Attention bit is set, the SAPI is notified
immediately via the a system specific attention or out-of-band
signal.

In case of error: the channel machine logs the error (see 9FP
Maintenance Service), discards the message, and sends an
ExecuteResponse with the Status code proper to the error (see
Status codes for ExecuteResponse below).

Receiving States

CURRENT STATE INPUT NEXT STATE OUTPUT COMMENIT
(SUB-STATE)

------------------------ ----------------- --------------------- ----------------------
ESTABLISHED valid c execute c place c execute c at

Execute Command I I end of r:ecelve queue I
(synchronize) I

-- - - -- - - - I-- -
I ESTABLIS11ED valid c execute-c notify ';API of

Execute Command attention, place
(synchronize, c execute c at end I
attention) II f receive queue

-- -- - - - - -I -- - -- - - - - - - - - - - - -- - - - - - - - - -- - - -
I - - - - - - - - - -I

ESTABLISHED valid c execute-c place c_execute c at
I Execute Command I head of receive

(expedile) queue

I -- - - - - -- -- - - -- - - - - -- - - - -
ESTABLISHED valid Ic execute-c I notify SAPI of I

Execuce Command attention, place
(expedite, c execute c at head

I attention) 6T receive queue

I --- -- -- -- -- -- --
I SENDER valid Execute Response I acknowledge but
I DRAINING Execute Command (Status=3

0
) discard the nessage

RA F Ixctomn

I any other Execute Command log the error
I state (valid or

invalid)

- 7(3 -

------- ------ -- --- ------ ------- ---- - - - - - - - - - - - - - - --- -- - - - - - - - - -

70-.---

Subsequent Action By the Receiver

In the normal case: an s execute r event with Status = 0 is
caused by the SAPI in response to the c execute c event. The
channel machine then sends an Execute Response wTth Status
0, and continues to exchange data with its apposite.

In case of error: a s execute r event with Status / 0 is
caused by the SAPI. The channel machine then sends an
Execute Response with Status 3 0 and resumes data exchange
with its apposite.

Subsequent Action by the Sender

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: if the channel machine receives an
Execute Response with Status 3 0, it notifies the SAPI of the
error via a c execute r event with Status ' 0 and resumes data
exchange with its apposite.

Semantics of Fields

Type: 3 specifies Execute.

C/R: 0 specifies Command.

Credit: specifies the number of Transmit Commands beyond the
number specified by the Ack field, which the sender of the
TransmitResponse is prepared to receive.

Seq: specifies the sequence number of the last
TransmitCommand sent by the sender of the ExecuteCommand.

Ack: specifies the sequence number of the last in-sequence
Transmit Command correctly received by the sender of the
present ExecuteCommand.

Group and Member: specifies the channel over which the
ExecuteCommand is to be sent.

Control: the Control field bits have the following meaning:

Bit
0123 Meaning

0000 Place the ExecuteCommand at the head of the
data queue.

71

ExecuteCommand

I

1000 Place the Execute Command at the head of the

data queue. Notify the SAPI of the Attention.
0001 Place the Execute Command at the end of the

data queue.
1001 Place the Execute Command at the end of the

data queue. Notify the SAPI of the Attention.

Semantics of TEXT

TEXT contains the service access protocol message.

- 72 -

ExecuteResponse

Execute_Response

Function

An Execute_Response is used by a channel machine to effect. the
transfer of data to its apposite in response to an
Execute Command. Like the Execute Command, the
ExecuteResponse is not subject to flow-control and order
guarantee.

When Sent

When an acceptable s execute r event has been caused by an
SAPI, the channel machine sends an Execute Response.

Sendinq States

CURRENT STATE INPUT NEXT STATE I OUTPUT COMMFNT
(SUB-STATE) J

I -- - - - - - - -- - - - - - - - - - -- -- - -- -- -
ESTABLISHED acceptable I c accept place

s-execute-r J Execute Response Execute Response At
I head of send queue

I I

SENDER valid - Execute Response acknowledqe but
DRAINING Execute CommanA J (Status-39) d~scard the ressaqe

Action When Received

In the normal case: a channel machine receiving an
Execute Response is in the ESTABLISHED state. The channel
machine then causes, at the earliest opportunity, a
c execute r event in order to pass the TEXT field of the
Execute_Response directly to the SAPI, i.e., ahead of any
other data queued for it. The channel machine does not change
state.

In case of error: the channel machine logs the error (see TIFP
Maintenance Service), notifies the SAPI of the error via a
c execute r event which also passes the TEXT field of the
Execute_Response to the SAPI. The channel machine does not
change state.

- 73 -

-'
- -

i - - - - - - - . - . _ . t- -

ExecuteResponse

Receiving States

-- -- ------- ----- --- -- - - ---------- ---- - . --- --- --------------- -
CURRENT STATE INPUT NEXT STATE I OUTPUT COMMENT

(SUB-STATE) I

ESTABLISHED valid c execute-r I place c execute r at
Execute Response head of-receive-

queue

-- - - -- - - - -- - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - -

SENDER valid discard the message
DRAINING Execute Response

any other ExecuteResponse log the error
state (valid or

I invalid)

Subsequent Action by the Receiver

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite.

Subsequent Action by the SeiideE

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite.

Semantics of Fields

Type: 3 specifies Execute.

C/R: 1 specifies Response.

Credit: specifies the number of Transmit Commands beyond the
number specified by the Ack field, which the sender of the
Transmit-Response is prepared to receive.

Seq: specifies the sequence number of the last
TransmitCommand sent by the sender of the ExecuteResponse.

Ack: specifies the sequence number of the last in-sequence
Transmit Command correctly received by the sender of the
present Execute-Response.

- 74 -

execute-Response

Group and Member: specifies the channel over which the
ExecuteResponse is to be sent.

Status: indicates whether or not an error has been
encountered. The following codes are applicable to the
ExecuteResponse:

Status Meaning

0 Command was successful.

1 Channel non-existent: the Group and Member
fields of the Execute Command referenced a
channel machine unknown to the receiving CPI.

2 Illegal state: the Execute Command referenced
a channel machine which was in a state for
which the ExecuteCommand is an illegal input.

3 Command not implemented: the Execute Command
is not implemented by the receiving CPT.

5 Message too long: the number of bits in the
Execute Command exceeded the maximum permitted
by the receiving CPI.

6 Service access protocol message error: an
error in f-hp gervice access protocol message
contained in the TEXT field of the
ExecuteCommand was detected by the SAPI.

7 Illegal Control field value: the Control field
of the ExecuteCommand contained an undefined
value.

39 Command discarded: the channel machine is in
the SENDER DRAINING or SENDER TERMINATING
state, and has discarded the ExecuteCommand

without passing it to the service access
level.

Semantics of TEXT

TEXT contains the service access protocol message.

- 75 -

~NUP

NOP

Function

A NOP is used by a channel machine as a filler when a channel
protocol message does not completely fill a link level
protocol frame.

When Sent

When a channel protocol message does not completely fill a
link protocol frame, the channel machine may send a NOP as
filler.

Sending States

-------------------------------- --------------------- -------------
II I CO M N
I CURRENT STATE INPUT NEXT STATE i OUTPUT COMMENT

I (SUB-STATE) I I
-I !

II I I
any state any input .OP

--------------------------- --------------- --------------------- ---------------------- I

Action When Received

In the normal case: the channel discards the NOP.

Receiviing States

-- - - - - - - - -- - - - - - - - - I -- -- -
CURRENT STATE INPUT I NEXT STATE OUTPUT COMMENT

(SUB-STATE)

any state NOP I discard

I76

NOP

I'I
Subsequent Action b the Receiver

None

Subsequent Action _ the Sender

None

Semantics of Fields

Type: 5 specifies NOP.

All other fields are irrelevant. These fields may contain any
values.

Semantics of TEXT

None.

- 77 -

Transmit_Command

Transmit Command

Function

A Transmit Command is used by a channel machine to effect the

flow-controlled, in-order transfer of data to its apposite
(see Overview, Transmission Control).

When Sent

When an acceptable s_transmitc event has been caused by an
SAPI, the channel machine sends a Transmit Command (flow-
control permitting).

Sending States

-------- ----- ---. -------- ------- --------------- ---- - -- --------
I CURRENT STATE INPUT NEXT STATE OUTPUT I COMMENT
I (SUB-STATE) I

I ESTABLISHED acceptable - c accept I
I stransmit c TIansmit Command I

Action When Received

In the normal case: a channel machine receiving a
Transmit Command is in either the ESTABLISHED state or the
RECEIVERDRAINING state. The channel machine then causes a
c transmit c event in order to pass the TEXT field of the
Transmit Command to the SAPI. The channel machine does not
change state, but does apply the transmission control
discipline (see Transmission Control). Transmit Commands may
also be received in the RECEIVER TERMINATING-state after a
non-flushing EndCommand has been received. (see Termination,
EndCommand).

in case of error: the channel machine logs the error (see HFP
Maintenance Service) , discards the message, and sends a
TransmitResponse with the Status code proper to the error
(see Status for Transmit_Response below).

- 78 -

TransmitCommand

Receiving States

I CURRENT STATE INPUT NEXT STATE OUTPUT COMMENT I
I (SUB-STATE) I
-- -------------- --- I-------------I--- --------------- --------------------- I

I ,-- -
F ESTABLISHED valid c transmit c update flow control

(with data Transmit_Command T-ransmitCommand(s)
queued for I
apposite
CPI)

ESTABLISHED valid c transmit c update flow control
(with no Transmit-Command I T-ransmitR-esponse
data queued
for
apposite
CPI)

ESTABLISHED invalid Transmit_Response log the error
Transmit Command (Status/0)

SENDER valid TransmitResponse acknowledge but

DRAIRING TransmitCommand (Status=39) discard any incominq
messages

SENDER invalid Transmit Response log the error
DRAINRING Transmit -Command (Status3 O)

SENDER I valid I discard the message I
TERMYNATING Transmit-Command

--

any other Transmit command Ilog the error
state (valid o7

IInvalid)

Subsequent Action by the Receiver

In the normal case: the channel machine acknowledges its
receT-pt of the TransmitCommand via the Ack field of the next
Command or Response it sends, and does not change state. When
flow control credit must be extended and the channel machine
has no other messages to send, it sends a Transmit Response.

In case of error: the channel machine sends a
Transmit-Response with Status 0 but does not change state.

- 79 -

Subsequent Action by the Sender

In the normal case: as long as the channel machine has data to
send and flow control permits, the channel machine continues
to exchange data with its apposite.

In case of error: the channel machine logs the error and takes
the appropriate action, resuming data exchange with its
apposite.

Semantics of Fields

Type: 1 specifies Transmit.

C/R: 0 specifies Command.

Credit: specifies the number of Transmit Commands beyond the
number specified by the ACK field, which the sender of the
Transmit Command is prepared to receive.

Seq: specifies the sequence number of this Transmit-Command.

Ack: specifies the sequence number of the last in-sequence
TransmitCommand correctly received by the sender of the
present TransmitCommand.

Group and Member: specifies the channel over which the
TransmitCommand is to be sent.

Control The use of this field is undefined.

Semantics of TEXT

TEXT contains the service access protocol message.

- 80 -

TransmitResponse

j TransmitResponse

Function

A TransmitResponse is used by a channel machine to pass
transmission control information to its apposite (e.g., to
acknowledge receipt of a Transmit Command, to update flow-
control) or to report to its- apposite an error in a
TransmitCommand received.

When Sent

When a channel machine must acknowledge a TransmitCommand and

has no Transmit_-Commands to send, or when an error has been

detected in the TransmitCommand, or when flow-control Credit
(see Transmission Control) must be extended and the channel
machine has no other messages to send, it sends a

Send4n States

---------------------------- --------------- --------------------- ----------------------
I CURRENT STATE IINPUT INEXT STATE IOUT PUT ICOMMENT

I (SUB-STATE)I
--------------- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -

IESTABLISHED Ivalid I-------I c transmit c Iupdate flow control I
I (with no I Transmit-comimand IITransmit-Re9sponse I
Idata queuedl

forII
I apposite II
I CPI)I I

--- --------------- --------------------- ------------- I

IESTABLISHED I Invalid I-------ITransmit_Response Ilog the error

I I TransmitCommand I (Status~'B)

ISENDER Ivalid I-------ITransmit Response Iacknowledge but
I DRAIN~ING I Transmitcommand 1I(Status-39) Idiscard any Incoming

I II messages
--- -------------------------

I SENDER Iinvalid I-------I TransmitResponse Ilog the error
I DRAINING ITransmtt command I I (Statusx'0)
------ ---------------- ------------------- --------------- --------------------- ---------------------- I

-81 -

TransmitResponse

Action When Received

In the normal case: a channel machine receiving a
Transmit Response is in either the ESTABLISHED state, the
SENDER DRAINING state, or the SENDER TERMINATING state. The

channel machine does not change state, but does apply the
transmission control discipline (see Transmission Control).

In case of error: the channel machine logs the error (see HPP
Maintenance Service), and performs any necessary error-
recovery, but does not change state. If the error was
"message out of order" (Status = 35), the channel machine is
to retransmit all messages up to and including the last
message sent.

Receivinq States

--------------------------- --------------- --------------------- ----------------------
CURRENT STATE INPUT NEXT STATE OUTPUT COMMENT

(SUB-STATE)
----------- ------------------- --------------- --------------------- ----------------------

I ESTABLISHED valid I update flow control;
TransmitResponse loq any error

SENDER valid update flow conLrol
I DRAINING Transmit Response

SENDER_ valid Iupdate flow control I

TERMINATING TransmitResponseII

any other Transmit Response I] oq the error

state (valid or

invalid)

------------------.-------------------.---------------.--------------------------------------

Subsequent Action By the Receiver

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite.

- 82 -

Transmit_Response

Subsequent Action by the Sender

In the normal case: the channel machine continues to exchange
data with its apposite.

In case of error: the channel machine resumes data exchange
with its apposite. (if the channel machine encounters a high
frequency of erroneous TransmitCommands some special action
may be required.)

Semantics of Fields

Type: 1 specifies Transmit.

C/R: 1 specifies Response.

Credit: specifies the number of Transmit Commands beyond the
.iumber specified by the Ack field, which the sender of the
TransmitResponse is prepared to receive.

Seq: specifies the sequence number of the last
TransmitCommand sent by the sender of the TransmitResponse.

Ack: specified the sequence number of the last in-sequence
Transmit Command correctly received by the sender of the
present TransmitResponse.

Group and Member: specifies the channel over which
TransmitResponse is to be sent.

Status: indicates whether or not an error has been
encountered. The following codes are applicable to the
TransmitResponse:

Status Meaning

0 Command was successful.

I Channel non-existent: the Group and Member
fields of the Transmit Command referenced a
channel machine unknown to the receiving CPI.

2 Illegal state: the Transmit Command has
referenced a channel machine which was in a
state for which the Transmit Command is an
illegal input.

5 Message too long: the number of bits in the
Transmit Command exceeded the maximum
permitted by the receiving CPI.

- 83 -

TransmitResponse

6 Service access protocol message error: an

error in the service access protocol message
contained in the TEXT field of the
Transmit Command was detected by the SAPI.

35 Out of sequence: a TransmitCommand was
received and discarded whose Seq field was
neither in sequence (equal to <last received>
+ 1] nor a duplicate (between (<last received>
- 7) and <last received> inclusive] (see
Transmission Control).

36 Out of window: a Transmit Command was received
and discarded whose Seq field was between

(<last received> + Credit + 1) and (<last
received> + 8) inclusive (see Transmission
Control).

39 Command discarded: the channel machine
received a Transmit Command or an
Execute Command, is in the SENDER DRAINING or
SENDER TERMINATING state, and has discarded
the Command without passing it to the service
access level.

Semantics of TEXT

undefined

Field Function

Size specifies the number of bits in the !lessae Format
entire message. Alternate

Field Field Alternate
Field Size Size Field
Eame (bits) (bits) Name

Type specifies the message type: HEADER /----

siz 1
Begin 0 Size 16a
Transmit 1
Execute 3 I----
End 4 Type 1 3
Nop 5 C/R 1I 1. . . I

Credit 1 4
I -I. I - I

C/R (C/R = 0) indicates a Command or Seq 4 I
a (C/R t 1) indicates a Response. ACk 4 (BEGi Coand)a d)I 4... (I ~ N Cnad

(not used) 4 I

Group .1 . I
Credit specifies the number of I

Transmit Commands beyond the number I ------- I
specified by the Ack field, which I I
the sender of this message is Member I 1I
prepared to receive. III..I

Control 8 I 8 Status
(Commands) i I I I (Responses)

Seq specifies, in a Transmit Command PAD I4o.e A I
its sequence number. -------

I I

TEXT INote 8 1
/

Ack specifies the sequence number of
the last in-sequence Note A: The size of PAD is an installation parameter.
Transmit Command correctly received Note 0: The size of TEXT is computed by:
by the s~nder of this message. (Size) - (size of PAD) - 72,

Service specifies, in Begin Command, the Control specifies control information for
SAPI to which the channel is to be Execute Commands and End Commands.
established.

Status specifies status information in
Responses.

Group specifies the channel group which
the message references. PAD is zero or more bits lorg and

serves only to place TEXT on a
convenient boundary.

Member specifies the channel which the
message references within the TEXT contains a service access or other
channel group. higher level protocol message.

CHANNEL PROTOCOL HEADER

/

Begin Responlse
(staitus-0)

SENDER IVR
TA B7X AKNGBA

kstal eX0) e

SUME RCEVE

106
NUE

0)
cl- pLt

SYNOPTICCHANNESMACLIHIE SAEDIGA

SENDER

A CPI SENDS A CPI SENDS

Begin Command Begin Response
to initiate a new connection, to acknowledge a Begin Command.

EndCommand End Response
to terminate a connection, to acknowledge, an End._ComMand.

Execute Command Execute-Response
to send out-of-band signals. to acknowledge an Execute Corand.

Transmit Command Transmit-Response
to send data between the host and the to acknowledge one or more Transmit Connands.
front end.

AN SAPI CAUSES A CPI CAUSES

:_begin c c accept
to request that a new connection be to notify the SAPI that an s.<event> appeared correct
established, and has been acted on.

s bginr c-begin c
to respond to a new request for service to request a new service be initiated.
by a cbegin c.

s end a c begin..r
to request that a connection be terminated, to acknowledge a request for new cervice by an

llbegin c.

s.end r cend.c
to respond to a request to terminate a to request a service for a user be terminated.
service by a cendc.

s executec cend r
to request that an out-of-band signal to acknowledge a request for termination by an
be sent. s end-c.

s executer c ,xecute c
to respond to an out-of-band signal delivered to deliver an out-of-band signal to the SAPI.
by a c execute c.

sidentify c execute r

to notify the CPI that a service is ready to acknowledge an out-of-band signal generated by
to accept users, an sexecutec.

s ready c ready
to control the flow of data from the CPI to to c"ontrol the flow of data from the SAPI to the CPI.
the SAPI.

s-status c-reject
to request the status of the CPI for to notify the SAPI that an a event; was in error.
a particular connection.

stransmit c o status
to request that data be sent. to provide the SAPr with the status of a connection

in response to an asstatus.

c-transmt c
to deliver data to the SAPI

A SYNOPSIS OF COMMANDS, RESPONSES
AND CHANNEL INTERFACE EVENTS

c begin c

s bein rf
St;tus yrO)

0.0

0~

U t

Unaccep abl1e

request termidnation c beg r

s-end-c 0ItS e c0

send data

S-tran'nt c

SYNOPTIC SAPN STATE DIAGRAM

.9

Host Front End Protocol
Channel Machine

State Table

This section contains the detailed state transition table for CPI
channel machines. There is a channel machine for each channel.
A given channel machine receives inputs from and generates
outputs for both the CPI multiplexor/demultiplexor (Commands and
Responses) and an SAPI (events).

- 85 -

- 86 -

Ch-annel machine States

-- -- - - - - -CU- ---R--- -- -- -- - - - - - - -- - - - - - - - - - I - - - -i - - - - - -
CRETSTATE IINPUT I' NEXT SPATE IOUTPUT [COMMENT

I (SUB-STATE) II I

-- - - - - - - - -I -- - - - - -- - - - -
I NULL Iacceptable ISENDER c caccept I initialize channel I

IIsbeginc I PENDING IBeginCommand I machine

I -- - - - - -- - - - -
INULL Iacceptable c -accept

I Iasendc IEnd-Command I
II(fius''ag, from I I (flubbing)
I I FP M& tenance I
I I qervice)I

----------------------------------- ------------------- --------------- --------------- I
INULL Iacceptable I-------- acceptI

I I _end r (from HFP I I End Response I
I I ~Maintenance II
I I Service) I
NU LI -- -

NUL acceptable I------I caccept Iregister the SAPI

I I ~sidentifyI

NULL acceptable c------- status Idetermine'status I
I I s statusI

INULL Iany other event I-------I creject I log the errorI
I I (acceptable or
I I unacceptable) I

-- - - -- - - I I -- - - - - - -I-- - - -
I NULL I valid I RECEIVER I cbeginc I initialize channel I

II B:'ginCommand I PENDING I I machineI

NULL IEnd Command I------IEnd Res-ponse I discard the nessAqe
I I (valid orI
I I invalid, flushing I

or non-flushing) III

INULL IEndResponse I------I -- -Idiscard the message I

INULL Iany other Command I-- -- ----- corresponding I log the error
I I (valid or R esponse (Status=2)
I I Invalid)III

NULL Iany other I-------IIlog the errorI
I I Response (valid I
II or invalid) III

-87-

Channel Machine States

CURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENTI) I (SUS-STATE) II

I SENDER_ I acceptableI SEND~ER c cacceptI
IPENDING s send c (flushing I TAKINqG BACK En d CommandI
IIor non-flushing) I I(flishing)

-- - - -- - - - -- - - - - - - - - I -- - - - - - - -- - - - - - -
I -- - - - - - - --- -- -- --

SENDER_ acceptable I-------Ic status Idetermine status
I PENIfNG Is statusI

-- - - -- - - - -- - - - - - - -- - - - - - -
SEDRayother event creject log the error

PED1G (acceptable or I
unacceptable)

! SEDE vaid IESTABLISHED c cbeginmr
I E6IG Begin Response II(S tatus~a)

I(Statu6s=l3

I -- - - - - --I- - - - - -
I SENDER Ivalid I NULL Ic begin_rII
I PENDING IBegin Response II(StatusM)

II (StatUsON II

I SENDER Iinvalid ISENDER c cbegin r Ilog the error
PENDING IBegin Response I TERMINATING I(Status70)

I I I IEnd Command
I I I (flishing)I

I SENDER IEnd Command INULL c cend c
I pENDT1NG I(vaTid or IIEnd Response

I I invalid, flushing I
I I ~or non-flushing) I

--------- - .- I I

SEDR I any other command I--------I corresponding Ilog the error
I PNDING I(valid or IIResponse (status= .)
I Iinvalid)

SENDER Iany other ------ II log the error
I PIENDING IResponse (valid I

I I ~or invalid) I

-88-

Channel Machine States

ICURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE) I

------- ------ ---- --- --- ---- -- ---- --- --- --- - -- - ---- --- --- ---- --- ---- --- -- -

IRECEIVER Iacceptable IESTABLISHED Ic acceptII
I PENDING s begin r I BegIn Response I

I I(Statuse:;) II(Status=A)

~~~~~I ------------------------.....--------.....................
IRECEIVER Iacceptable INULL c caccept
I PENDING I s begin r IiBegin Response

IRECEIVER I acceptable INULL c caccept
I PENDING I s-end_c (flushing I IEnd Command

II or non-flushing) I I(flushing)

I -- - - - - - - - - - - - - -- - - - - - - - - - - - - - -
IRECEIVER_ I acceptable c------- status I determine status
I PENDING Is statusI

RECEIVER I any other event I-------I c reject I log the errorI
,PENDING (acceptable or I

Iunacceptable)

RECEIVER_ I valid End-CommandI RECEIVER_ c cend c
PENDING II TAKING-BACK

- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IRECEIVER Iinvalid INULL c cend c I log the error
I PENDING End Comm'~nd IIEndResponse II

I -- - - - - - -- - - -I- - I

IRECEIVER I any other Command I------I corresponding Ilog the errorPDIl (aidoIIRepne Stus)I
Iinvalid)I

-- - - - - - I -- - - - - -

RECEIVER I any other I------IIlog the errorI
I PENDING I Response (valid I

I I or invalid)

-89-



Channel' Machine States

'CU211ENT STATE IINPUT INEXT STATE IOOTPUtI COMMENT

V SENDER- I acceptable c----- -caccept I
TAKINGBACK s send c (flushing IIEnd Command

or non6-flushing) II (fl'Ushing)
- -- - - - ---- -- -- -- --- -- -- -- II

SENDER Iacceptable c------- cstatus Idetermine status
TAKING BACK s sstatusI

ISENDER Iany other event I -- -- --- I c reject Ilog the error
TAKING BACK I(acceptable or I

unacceptable) II
I ~I -- - - - - - - - -- - - - - - - -

ISENDER IvalidI-----
I TA~triNG BACK IBegin Response I

I I ~(Status=O) III

SENDER Ivalid I NULL I c begin r
TAKING-BACK IBeginResponse I I(Statusil)
II(Status$0) I I

ISENDER Ivalid End-command INULL c cend c
I TAKINfGBACK I IEndRegsponseI

-- - - - - - - - - -- - - - - - - I-- - - - - - - - - - -----
ISENDER Ivalid INULL c cend r
I TAKING BACK IEnd-Response - -

-- -- -- - -I I
SENDER Iany other Command I------Isend corresponding Ilog the error I
I TAKINTGBACK I(valid or IIResponse (Status-2)

I I ~invalid)I

I SENDER Iany other III log the errorI
I TAKING BACK IResponse (valid I I

or Invalid)II

90-



Channel Machine States

-- - -- - -- - I I I
ICURRENT STATE I INPUT NEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE)_II

I RECEIVER jacceptable I-------Ic rejectI

TAKINGBACK NUL begini rn

IRECEIVER Iacceptable INULL c caccept
I 'AKING BACK s egnr I In ResponseI

69Itso I Ia~O

I RECEIVER - I acceptable NULL------ csaetsIdtriesau
I TAKING-BACK Is us cIfuhn En omn

-- - - -- - - - I -- -- -- -- - -- - -
IRECEIVER I anyeothbe event c-------- acrcectI o th errI
I TAKING BACK I (aceptabl or; Resons

RECEVERacceptble c sttu deemnesau

I TAKING BACK s statussone
I------------------------I_----------- --------------------- ----------------------I

IRECEIVER Iany other Commnd I------I correpndn I log the errorI
I TAKING-BACK I(vceabl or IIRepne( ats ) I

IRECEIVER Iany other Comn RECEIVponRin log the error
I TAKING BACK ai do Response (vald aTKINsBCKI

I o nvalid)I I

r I nvalid

~91



Channel Machine-'8atstaes

I CRETSAEIPTNEXT STATE OUTPUT ICOMMENT
(SUB-STATE) I
------------------------------------------------------- ----------- -------------

ESTABLISHED Iacceptable ISENDER c caccept Idiscard any queued
s enI TERMINATING I nd Command Idata

ITu~lg I (fl-Gshzig)

ESTABLISHED Iacceptable ISENDER c caccept Idiscard any data I
I (with data Is end c (non- I DRAIN G II queued for SAPI;

queued for Iflush-fng) I send data to
appoie IIapposite CPI; place I

I CPI) IIIEnd Command (non- I
I II flushing) at end of
I I II send queue;I
I II acknowledge but I
I II discard any incominq

H I I Imessages

ESTABLISHEDI acceptable I SENDER_ I c accept discardi any data I
I (with no I s end c (non- I TERMINATING IEnd Command (non- Iqueued for SAPI;

I data queued IfTushTng) II flushing) Iacknowledge but
for IIdiscard any incomingI
apposite Imessages

I CPI)II
-- - - -- - - - -- - - - - - - - - -- - - - - - -

-- - - - - - - - - - -- -- -- - -- -- -
IESTABLISHED Iacceptable c------- caccept jiplaceI

I I s execute c xecute Command IExecute Command atI
I I (synchronize) IIend of send queue I
-- -- -- - - - -- - - - -- -- - - -- - - - - - - - - -- - - - - - - - -------------------I

IESTABLISHED Iacceptable ------- caccept Iplace
I I s execute c IIExecute Command IExecute Command at

I I Iite head of-send queue

ETBIHDIacceptable I-------- c accept Iplace
sIexeuteI ExecuteResponse IExecute Response at
I I I Ihoad of-send queue I

IESTABLISHED Iacceptable ------- ccept
I (with no I sroadyI
I data queued III
I for SAPI) III

I -- - - - - - - -- - - - - - - - - -- - - - - - - - -
IESTABLISHED Iacceptable I-------- caccept

I (with data I sready I ctransmit-c(s) I
I queued f.,r I

SAPI) II
II -- - - - - - - - - - - - - - - - - - -

IESTABLISHED Iacceptable c-------- cstatus Idetermine status I
I Is-statusI

IESTABLISHED Iacceptable I-------Ic accept
I~ Istransmit c II t-ansmit Command I

- -- - - - - - - - I -- - - - -- - - - -- -- -
-- - - - - - --I- - - - - -I --I- - -- - - -

ESTABLISHED I(able to I-------- cready

from SAPI
or previous I
allccpato

f I I exhausted) I

IESTABLISHED Iany other event I--------I c reject I logj the error
II (acceptable or II

unacceptable) I

-92-



ChanelMachine- States

CURRENT STATE IINPUT I NEXT STATE I OUTPUT IcOmiNT
(SU-STATE) III.

-----------------I
IESTABLISHED Ivalid End 'Command I RECEIVER I c end c I discard any data I

II (flushing-) I TERMINATING I queued for SAPI and I

Ifor apposite P
-- - - -- - - - -- - - - - - - - - -- - - - - - - - - - I

IESTABLISHED Ivalid EndCommand I RECEIVER IIdiscard any data
I (with data I(non-flushing) I DRAENG II queued for apposite I
I queued forI I CPI; place c end c I
I SAPI) II at end of receli I

I II queue; acknowledge I
I I II but diac'ard any
IIII incoming-messaqus I

ESTABLISHED Ivalid End Command I RECEIVER c c end -c I discard any data
Sj(with no I (non-flushi1ng) I TERMINATING II queued for apposite I

I data queued I i cp;akowegIu I
I for SAPI) Idiscard any incomingI

I I I Imessages

ESTABLISHED Iinvalid INULL c cend c Ilog the errorI
j Iend-Command IIEdRsos

I I tflojehing or II
I non-flushing) I I

-------------------- ------------------- --------------- --------------------- ------------------- I

ESTABLISHED valid Icexecutec Iplace c execuite c at

IExecute Command Iend of rFeceive queueI
I (synchronize) I

'IESTABLISHED Ivalid Icexecutec Inotify SAPI ofI
I IExecute Command I I attention, place

II(synchr~nize, III c exeCuLe -c at end I
I Iattention) I I oY receli queue

-- - - -- - - - -- - - - - - - - - -- - - - - - - I
-- -- - -- -- - -- - I -- - - - - -- - - - -

IESTABLISHED Ivalid I cexecutec I place c execute c at
II Execute Command II head of-receive I
II (expeditEe) I I queue

ESTABLISHED Ivalid Icqexecutec noti-Ey SAP! of
Exeut Comad ttetinplace I
(expdi~e c xecue cat head
atetin -frcevequeue I

-------------- ------------ --------------------- ---------------------- I
--- -- -- -- --
IESTABLISHED I valid c cexecute r I place c execute r atI

I xeutRspns hadofreceive I

------------ ------------------- --------------- --------------------- ----------------------

IESTABLISHED) valid c-------- ctransmit c Iupdate flow control I

(with data ITransmit-Command iITrFansmit C(.mmand(s) I I
I apposite I

Cpl) I

IESTABLISHED Ivalid -------- I c -transmit -c Iupdate flow control I
I (with no I Transmit Command II TransmitResponse I I
I data queued I
I for II
I apposite III

----------------------------------- -------------------- ---------------------
I -- -- -- -- - I I -- - -- -

IESTABLISHED Iinvalid I- ------- I Transmit-Response I I"theil. rr I
IITrAnsnitCommand I I (Staturpfl I

--------- I I I - -1 -----

IESTABLISHED Ivalid I-------- -- -wate flow control; I
I ITransmit-Response III log any errorI

II ---- ---- ---
ESTABLISHED I any other Command I ir ~ x-z~-pondinq Ilog the errorI

I (valid or I I iponse gStatus-2)I

IESTABLISHED Iany - --- Ilog the errorI

-------n--l-d ----------------------------------



Channel machine StCates

(SUB-STATE)I
-------- I--------I----------------------------------- ----------------------I
ISENDER Iacceptable ISENDER Ic accept discard any queued
I DPAIRING Is end c ITERMINATING IEnd Command Idata

II(Ylushlng I I (flu6shing)
---------------- ---------------- I -------- ------------

I -- -- -- -- -- -- -- -
ISENDER Iacceptable I- I c status determihe status I
I DRAIRNG s Sstatus II I

ISENDER Iany other event I-- -- ----- c reject Ilog the error
DRAINING I(acceptable or IIF
I I unacceptable) II

ISENDER Ivalid End Command INULL c cend c Idiscard any data
MIDRIING I(flushing) T End Response Iqueued

ISENDER I valid I-------IExecute Response Iacknowledge but I
I RAIKING IExecute Command II(Status=39) Idiscard the messadeI

-- -- --- - - - - -- - - - - - - -- - - - -- - - - -- -- - - - - -- - - - -
---- ---- ---

SENDER_ valid Idiscard the messageI
DRAINING IExecute ResponseI

SENDER_ I valid I-------ITransmit_-Response Iacknowledge hut I
DRAINING Transmit-Command II(Statusz'39) discard any incoir..

messages

SENDER_ I (acknowledgement ISENDER_ End Coimnand (non- I
I DRAINING Iof last Transmit I TERMI7NATING Iflu-shing)I

I ~CommandII I

I SENDER_ invalid I-------;Tra.ift log the errorI
I DRAINING ITransmitcommand I I W, A;t

-- - - - - I I - - - - - - - - - - - - - - - -
SENDER I valid I ---- I update flow control I
I DRAINING ITransmit. Rcsr-P.on:I

SVAJDER_ a ny .. ther I -- Icorresponding I log the errorI

DRAIRNG I (i3.IIResponse (Status=2)I

orInvalid) I

49



Channel Machine St~tes

I11- -- --- I II -- --- - - -- -- --
CUORPNT STATE I INPUT I ?:EXT STATE O UTPUT eoC "MT

'1I-------- ---------- ---------- ---------------- ---- ----

RECEIVER_ I acceptable_ I NULL Ic accent
I DRAINING I s end c (flushing I I 'E6d Co3!and

I' I o- nc, --flushing) I - I ~lsiq

--------- -- - -- - -- - - ---- --- --- --- - ---- - - - -- - - -

RECEIVER- acceptable r to - 1A 1 I discard the message I
DRAINIG I sexecute c II

RECEIVER Iacceptable I - reject I discard the measage I
DRIIG Isexecute rIII

I RECEIVIER I 3k'--- ----- Ic accept I

DRAIN~iNG - I ctransnit cIIdtrie ttu

I (with

-- - - - - - - - - -- - - - - - - -- - - - - - - - - - -- - -- - -- - -- - -t ,1feY1VFR I acceptable -------- Ic status deemnesau

I DRAINI.4G Is starusI II
--------------------------- ---------------------- ---------------------- j

REEIE acceptable -- ------ I c reject I discard the message I
I DRAININ I s transmit c III

-- - - - ---- I I -- - - - -

I RECEIVER I (last IRECEIVER I c-end-c
I DRAINING I c transmit c I TERMINATING I
I I piassed)

--- -- -- -- -- I I II- - - - -- - - - - - -
II -- - - - - - - - - -- - - - - - - - - - - - - - - -

I RECEIVER_ I any other event I-------I c reject Ilog the errorI
I DRAINING I(acceptable or I

I I ~unacceptable) I

IRECEIVER valid EndConmand I fECRIVER c cend c discard any data .I
I DRAINING I(flus~lng) I TERMINATING IIqueuedI
---------- ----------------------------------------------- ------ I -----

IRECEIVER_ I any other Command I-------Icorresponding I loq the crror
I DRAINING I(valid or IIResponse (Status-2) I

I invalid)I

-- - - -- - - - -- - - - - - - - - -- - - - - - - -- - - - - - - - - - -- - -- - - -- - -

RECEIVER_ I any other I-------II log the errorI

DRAINING IResponse (valid IIII
r i nvalid)

--- ---- --- -- - --- ----- ---- ----- ---- --- - -- --- --- -- -- --- ---- ---- --- --- ---

95I



Channel Knehbne States

----- ---- ---- -------- --------
ICURRENAT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE) I II

------------------------- -----------------------------------------------------

[1 SENDER Iacceptable ------ Ic _satIderme
TERMINATING I ssts edc(ls iEdCom d

-- - - - - - - - - - - - - - - - - - - - - - - - I
I -- - - - - - - - - - - - - - - - - - - - -

I SENDER any other event Ic _reject Ilog the error
I TERMINATING I(acceptable or I

unacceptable)

SENDER I valid EndCommand INULL q cend~c
TERMINATING I(flushing-or II

non-flushing) I

I -- - - - - - - -- - - - - - - - - - -- - - -- - - -
I SENDER Iinvalid INULL c aend c Ilog the errorI
I TERMINATING IEnd...Command I nd esponseI

ISENDER I valid INULL c cend r
I TERMINATING IEnd Response I I

I-------------------
ISENDER I valid I-------II 0iscard the messane I
I TERMTviNTING ITransmit Command I

-- - - -- - - - -- - - - - -I - - -I- - - - -
I -- - - - - - - -- - - - - - - - -- - - - - - - -

I SENDER Ivalid I-------IIupdate flow control I
I TERMINATING ITransmitResponseIII

ISENDER I any other Command I------Icorresponding Ilog the error
I TERMINATING I (valid or IIResponse (Status-2)II

I ~Iinvalid)I

ISENDER I any other I------- log the error
I TERMINATING IResponse (valid II

I or Invalid)II

-96-



Channel Machine States

ICURRENT STATE IINPUT INEXT STATE O UTPUT ICOMMENT II
I I (SUB-STATE)I I

-- - - -- - - -- - -- - - -- - -
-- - - - - --_- - - - - - - - - - - - - - - - - - - - - -

IRECEIVER_ acceptable INULL q accep-I
I TERMINATING s send c (flushing I I 'Ed Comrrand I
I I or non -flushing) II(fl'Gshirng)I

IRECEIVER_ acceptable I------- status Idetermine status
I TERMINATING Is statusIII

IRECEIVER.. I acceptable INULL Ic acceptI

I TERMINATING s send r IIEn;d Response

I TERMINKTIKG I(acceptable or I
I ~unacceptable) III

---I------------- ------------------- --------------- -------- -----------------------I
I -- -- -- -- -

I RECEIVER Ivalid End Command INULL c cend c
I TERMINATING I(flu~shing or I EdResponseI
I non-flushing) II

TRIAIG (valid or I Response (Status-2)

RECEIVER Any other omnd log the error -

TEMNArGIResponse (valid II
or invalid)

~97..



Channel Machine States

-BLANK PAGE
-98-



CHANNEL INTERFACE

I! CHANNEL INTERFACE

Introduction

The following section describes a model for the channel
interface. The model is presented as a set of events
corresponding to the Channel Protocol Commands and Responses, and
a few events peculiar to the channel interface. 1t is of no
concern here whether an implementation of the channel interface
follows an event model or, say, a procedure callinq model.
However, the functions of the model must be preserved.. For a key
to the notation used in this section see "Notation and

Nomenclature Conventions for the Channel Machine.*

For each event, there is a presentation of:

1. its cause,

2. its effect,

3. the channel machine state table for it,

4. the semantics of its fields.

The conventions followed in the state tables are given in the
introduction to the Complete Channel Machine State Table.

9

~- 99 -



c-accept.

c-accept

[ Ca use
F A channel machine causes a c accept event in order to indicate

to the SAPI that an s event appeared consistent and has-been
V acted upon.

Effect

Any effect of a c accept event on the SAPI depends heavily on
I the implementatioi.

Channel Machine States

I CURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE)II

-------- --------------------------- ---------------------- I
I any state Iacceptable I(see the Ic accept I (see the s e<event>)I

Is <event> s-<event>) (see the s <event>)I
------- ----- ---------- ------------------- --------------- --------------------- ----------------------I

Ref: FIXED(?)
Group: FIXED(12) )
Member: FIXED(16)

semantics

~ I Ref: specifies the unique identifier suppl-ied by the SAPI toI identify this response to a previous s_<event>.

I Group and Member: specify the channel to which this event
applies.

~~~~~~ - 100 - _ __ _


I c 'begin c

c beg in c

Cause

A channel machine causes a c_begin-c event in order to request

an SAPI to initiate access- to a service.

F1 Effect

H I When an SAPI receives a c_begin_c event, it determines whether
or not. it can initiate access to the service and then causes
an sbegin r event indicating the result.

:1 Channel Machine States

ICURRENT STATE I NPUT I NEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE) I

-- - - -- - - - -- - - - - - - - -- I- - - - - -

I NULL Ivalid I RECEIVER c cbegin c initialize channel
IIBegin -command I PENnINU I machine

------------------ ------------------- --------------- --------------------- ---------------------- I

Syntax

Group: FIXED (12)
1Member: FIXED(16)

2Service: FIXED(16)
Text: VARIABLE

I Semantics

Group and Member: specifies the channel to be established.

ii Service: specifies the number of the SAPI to which the channel
is to be established.

Texct: contains the service access protocol message.

-101 -

cbeg i nr

c-begin-r

Cause

A channel machine causes a c begin r event in order to notify
the SAPI that it has received a Begin_Response.

Effect

When an SAPI receives a c_begin r event with Status 0 , it
may proceed to exchange data with its apposite. If an SAPI
receives a c_begin- r event with Status -X Of it enters the NULL
state.

Channel Machine States

-- -- - - - - - -- - - - - - -- - -- -- - - - - -- - - - -- - - - - -- - - - - -- - - --
I CURRENT STATE IINPUT INZXT STATE IOUTPUT ICOMMENT

I (SUB-STATE) I
-- I -- - -- - -- - - -- - - ---- - -- - -- - - - - - - -- - - - - -- - - - -

-- - - - - - I II
ISENDER I valid I 1STABLISHED c cbeqln-r I
I PENDING I Begin Response I(9tatu's-0)I

I I (StatUs=B) I

I SENDER Ival~d INULL I c begin rII
I PENDING IBeginResponse I (9tatus~0)

I I (Status~o) I

I SENDER Iinvalid ISENDER_ a cbegin r I log the error
I PENDING JBegin Response I TERMINATING I(9tatus7'0) II

I l I End CommandI
I I (flUshing)I

-- - - - - - - - -- - - - - - - - - -- -- -

I SENDER- I valid I NULL Icbegin rI
TAKING-BACK IBegin Response I (Status~0)IIV

-------- ------------------------------ ---------------------------

Syntax

Group: FIXED (12)
Member: FIXED(16)
Status: FIXED(8)
Text: VARIABLE

-102-

c_begin_r

Semantics

Group and Member: specify the channel refered to in the
BeginResponse.

Status: indicates to the SAPI whether the attempt to establish
a channel has been successful. This field will contain one of
the standard Status codes (see Complete Status Codes).

Text: contains the service access protocol message.

I

iii

- iA33 -

c-end-c

c-end-cV

If Cause I
Achannel machine causes a c end c event in order to pass the

TEXT field of an EndCommand to tEhe SAE'I.

EffectI

When an SAPI receives a c-end-c event, it is to immediately
terminate. the access to the service and ca~use- an s-end-r I
event.

~ -104-

c_end c

Channel Machine States

CURRENT STATE I NPUT EX STATE OUTPUT COMMENT

ii
RECEIVER vldEnd Command~ REEVE_ en_

PENING--STAT--E)K

"REIVR_ invalid I NULL I c end c I og tre error -

PEIN Edo ad I |End .Respofte

------------- ------- - --

I SENDER valid EndComand I NULL ce ,d € I
I !AKING_.BACK -- I Iid esc,

I PNIG I Iv~i or I~_ os
1I inald flshn I

RECEIVER valid End-Command REVLL R c e c
TAKING_BACK -- I IK IN" I

------------.-------------------- -------- --- - - - - - - - -- I
-1 RESTLISZ Ivalid NU end, , 1 discard any data

i (fluE-sbi-) I End-=A I cueed for SAP! and I

F'II for apposite CPI I

i- -----. --- ----- I- I
I SEDR I vai n-omn I NUL cIa

--E--LIS----- - ----- R--E--J" I discard any data

I (wi. dar. ' ,.-- "ang) I IAINIG queued for appositeI
I e'm- I -I ICPI; place cendc I

I I at end of receive
| queue; acknowledge I

R I v I but discard any I

Sincoaing messages

I----------------I -- - -- - -- - -- - -

IEaASLISNED valid End Comand IRECEIVER Ic nd I discard any data

I wiith no I(non-flushing) TERMINATING IIqueued for appositeI
daa queued CPI; acknowledge but

I fer SAP) I I I I discard any dncominq

I I I I messages

ESTABLISHED Iinvalid NULL cendc Ilog the error c
aEnd Command EndResponse

I (flishing orm a

I I ~non-flushing) III

SE valid End Command I NULL I c end-c discard any data

DRAithnoNG (n -flushing) TERd RWsponse queued frapst

data(last RECEIVER I ;end ;
DRAIG Ic transmitc TERMINATING

passed) g

-- - - - - - - - - - I

ARECEIVER D valid End Command cRECEIVER c endcdc any data

DRIIG (flushing) TERMINATING IIqueued

Rvalid End Comand NULL cendc p
I (flushing or

non-flushing)

II -- - - - - - - - - -- - - - - - -I-- - - - - -- - - - - - - - - - - - - - -

I SENDER invalid NULL c end c islog the error
TERMNATING I End_Command I EndResponse qed

RECEIVER valid End Command ENULL E cend V
TERMINATING (flushing-or End Response

' non-flushing)

--------- ---------- -----------------------------

- 105 -

- - - .,r rxt - -- -. -.- ~-- , -.. -~-~- - -

c endc

Syntax

Group: tP
Member:

te: VARIABLE

Semantics

Group and Member: specify the channel to be terminated. If
the Group is not zere and the Member is zero, all 'channels
with the same group are to be terminated. If both Group and
Member are zero, all cnannel's are to be terminated.

Status: indicates to the service whether or not the
End Command was correct. This field will contain one of the

standard Status codes (see creject).

Text: contains the service access protocol message.

- 106 -K _

- - c-end-r

c end r

Cause

A channel machine causes a c end r event in order to pass the
TEXT field of an EndResponse To the SAPI and to indicate to
it that the channel has been terminated.

Effect

When a SAPI receives a c end r event, it considers the channel
to be terminated.

Channel Machine States

I -------------- II - ------------------- -
I CURRENT STATE I INPUT NEXT STATE I OUTPUT I COMMFNT

] (SUB-STATE) I I

SENDER valid NULL c end r

I TAKING BACK End Response I
..:. I.

------------------ ------------------- --------------- --------------------- ---------------------- I

I SENDER I valid NULL Icend r

I TERMINATING End Response I
- - - - - - - - -- - - - -- - - ----------------- -- - - - - - - - - - -- - - - - -- - - - -

Syntax

Group: FIXED(12)
Member: FIXED(16)
Status: FIXED(8)
Text: VARIABLE

Semantics

Group and Member: specify -he channel on which an EndResponse
was received.

Status: indicates to the service whether or not the
EndResponse was correct. This field will contain one of the
standard Status codes (see c_reject).

107-

c end r

Text: contains' the service access protocol message.

108-t

c execute-c

c-execute c

Ca usejJA channel machine causes a c execute c event in order to pass

the TEXT field of an ExecuteCommand to the SAPI.

Ii Effect__
When an SAPI receives a c execute c event, it is to act on the
TEXT of the ExecuteCommand- immediately and cause anI s execute r event.

Channel Machine States

ICURRENT STATE I NPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE)

I -- - - - - - - -- - - - - - - - - - -- - - -- - - -
ESTABLISHED Ivalid I -- - ----- c executec Iplace c execute c at

Execute Command I Iend of receive queueI
I I(synchronize) I

-- - - -- - - - -- - - - - - - - - -- - - - - - - -- - - - - - - - - -I-- - - - - - -

IESTABLISHED Ivalid ------- Icexecutec Inotify SAP! ofI
I I Execute Command I attention, Fd)ace
I1(synchrnize, c -cexecute~c at end I
I I attention) I of receive queue

-- - - -- - - - -- - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - -

IESTABLISHED valid c - executecI place c -execute c at
IExecute Command IIhead of receive7 I
I I (expedl'Ee) II quetieI

-- - - -- - - - I
1 - -- - - - - - - -- - - - - - - -- - - - - - - - - - -- - -- - -- - -- - -

IESTABLISHED Ivalid c-------- execute-c nctify SAPI ofI
I I ExecuteCommand I attention, place I
I I (expedite, c e cxecute c at head
I Iattention) II oa receivi queue I

-- - - -- - - - -- -- -- - I --

Syntax

Group: FIXED(12)
Member: FIXED(16)
Text: VARIABLE

- - ~109 -

c-execute c

I I semantics
AGroup and 'Member: specify the channel on which ant
4 Execute Coman was receive&.

Text:. contains the service access protocol message.

11

.. . .I . . - _. - .. -- . .. -- . -. -..-. -..---- -, " -
" b 'e : - J '

I- = . ,

I C execute-r

c execute r

1 -it
I I Cause

A channel machine causes a c execute r event in order to pass
J° the TEXT field of an Execute-_Response to the SAPI.

Effect

When an SAPI receives a c execute r event, it is to process
the Text field.

Ii Channel Machine States

-I -------------------- - --------------------- ---
I CURRENT STATE INPUT J NEXT STATE OUTPUT I COMMENT
I (SUB-STATE) I]I _ II I
I I
I ESTABLISHED I valid I -- -- .- c execute-r I place c execute r at
I Execute Response I I head of-receive I

I I I queue
------- ---------------- ------------------- --------------- --------------------- ---------------------- I

Syntax

Group: FIXED(12)
Member: FIXED(16)
Status: FIXED(8)
Te'xt: VARIABLE

Semantics

Group and Member: specify the channel on which an
Execute__Response has been received.

Status: indicates to the SAPI whetier or not the
Execute Command was correctly formulated and any requested
action has completed. The field will contain one of the

standard Status codes (see creject).

Text: contains the service access protocol message.

Wf , - 11- m

c__ready

c_ ready

Cause

A channel machine causes a cready event in order to notify
the SAPI that it is able to accept data from it.

Effect

If the SAPI has data queued for the channel machine, it
attempts to transfer the data to it via an s transmitc event,
and, if necessary, updates the channel interface flow control
via an s_ready event.

Channel Machine States

I I------------- --------- -~-----

----------------I ------------ - --------------- -
I CURRENT STATE I INPUT NEXT STATE I OUTPUT COMMENT

I (SUB-STATE) I I I

----- ---------------- -------------------- --------------- ------------- ------- ---------------------- I

ESTABLISHED I (able to accept c ready
i data from SAPI or
I previous
I allocation
I exhausted)

--------------------- ------------------- --------------- ---------------------- ----------------------

Syntax

Group: FIXED(12)
Member: FIXED(16)
Msgs: FIXED (8)

Semantics

Group and Member: specify the channel to which thi-s event
applies.

Msgs: specifies the number of TransmitCommands the channel
machine is currently able to accept. The value of Msgs
replaces any previous value.

4 - 112 -I

creject

c_reject

Cause

A channel machine causes a c reject event in order to notify
the SAPI that an s event appeared inconsistent and has not
been acted upon.

Effect

When an SAPI receives a creject event, it enters an error
recovery phase.

Channel Machine States

CURRENT STATE INPUT I NEXT STATE I OUTPUT COMMENT
(SUB-STATE) I I I I

any state (any inacceptable I c reject]m; the error
s <event>) I

Syntax

Ref: FIXED(?)
Group: FIXED(12)
Member: FIXED (16)

Reason: FIXED(8)

Semantics

Ref: specifies the unique identifier supplied by the SAPI to
identify this response to a previous s_<event>.

414 Group and Member: specify the channel to which this event
applies.

- 113 -

SI c_reject

Reason: specifies a code indicating why the event referhed to
i'n the Ref field is being rejected. The reasons for rejecting
an event are assigned the following codes:

Reason Meaning

1 Channel non-existent: the Group and Member
fields of an sevent (other than an s-begin_c
or an s execute c event) referenced a virtual
channel unknown to the receiver.

2 Illegal state: an s event was received
referencing a channel which was in a state for
which the event type was illegal.

3 Event not implemented: an s event was received
whose type was legal but not implemented.
Currently this can only be an s beginc,
s executec, sexecute-r, or sstatus events.

5 Field too long: the length of a field in the
s event exceeded the maximum size permitted at
the installation.

6 Not used.

7 Illegal field value or combination of values:
the values of a field in the s event referred
to by the Ref code contained an illegal fie.d
value or a field value that was inconsistent
-with other field values specified by the
s event.

8 Illegal type: the sevent was of a type
unknown to the CPI.

9 Illegal Group and Member: the s event
specified a Group and Member that Is not
accessible to this SAPI.

10 Group(s) terminating: communication is beinq
terminated for this Group or for all Groups.

32 Channel in use the channel refereiced i, I;s -
s begin c event was already -
not in the NULL state).

33 Reserved.

34 Reserved-

4 ~35 ~ -

- 114 -I,

c reject

: V 36 No allocalion.: an s transmit c event has.<been
received and discarded because the SAPI has
exhausted the flow control allocation given to
kt via a cready event.

37 Bad channel polar.ity: the high-order hit of
the Group field in the s begin c lhad the wrong

38 value..

38 Channel down: HFP communication is not
enabled.

39 Command discarded: the channel machine
received a Transmit Command or an
Execute Command, is in the-SENDER DRAINING or
SENDER TERMINATING state, and has discarded
the command without passing it to the service
access level.

Ir

141
~- 115 -

c status

C-status

Ca use

IA channel nachine 43uses a o % ,n in order to notify
the SAPI of the its stemr=

Effect

A,; t.pzt*zt of a c status event on the SAPI will depend heavily

Channel Machine States

I OJRR=E%T STATE I NPUT I NEXT STATE I OUTPUT ICOMMENT
I (SUB-STATE)I I II

Iany state Iacceptable -------- I c status I determine status
s I status II I

Syntax

Group: FIXED(12)
Member: FIXED(16)
State: FIXED(8)
Snd_Msgs: PIXED(8)
Rcv Msgs: FIXED(8)

Semantics

Group and Member: specify the channel to which this eventI

State: contains a value indicating the current state of the
c-annel machine. The encoded values of the states are:

0 NULL

1 SENDERPENDING

111

c status

2 RECEIVER PENDING
3 SENDER "_AKING BACK
4 RECEIVER TAKING BACK
5 ESTABLISHED -
6 'SENDER DRAINING
7 RECEIVER DRAINING
8 SENDER TERMINATING
'9 RECEIVERTERMINATING

Snd Msgs: contains the number of events the channel machine
can pass -to the SAPI within the limits of the channel
interface flow control.

Rcv Msgs: contains the number of events the channel machine is
able to accept.

-117-

c transmit_c

c transmit c

Cause

A channel machine causes a c transmit c event in order to pass
the TEXT field of a TransmitCommand to the SAPI.

Effect

When a SAPI receives a c transmit c event, it processes the

data transferred from The channel machine and, if necessary,
updates the channel interface flow-control via an s_ready
event.

Channel Machine States

---ES ---------E -I a--ceptabl-------------- - accept;---------------
CURRENT STATE INPUT NEXT STATE OUTPUT COMMENT(SUB-STATE) I

ESTABLISHED acceptable c accept;

(with data s ready c transmit c(s)
queued for
SAP)

-- --------------------
ESTABLISHED valid c transmit c update flow control

(with data Transmit Command Transmit_Command(s)
I queued for

apposite
CPT)

ESTABLISHED valid c transmit c update flow control
(with no I Transmit Command Transmit Rsponse(s)I
data queued I
for
apposite
CPI)III

--------- ---------- -------- ------ ----------------------------cp I

RECEIVER I acceptable c accept
DRAINING I s ready c.transmit c
(with data I

I queued for I
SAPI) l

IDRAINING Ic transmit-c ITERMINATINGREIVR (atIRCVR Iced
I I ~passed)I I

- 118 -

- -- . -- ~ ~s

ytc transmit_c-

Syntax

Group: FIXED (12)
Member: FIXED'(16,)
Control: FIXED(8)
Text: VARIABLE

Semantics

Group and Member: specify the virtual channel on which a
Transmit Command has been received.

Control: undefined.

Text: contains the service access protocol message.

1

; ~- 119-- -

I ____

s_begin c

s_beg i n_c

Cause

An SAPI causes an s_begin c event in order to request its CPI
to establish a host to front end channel.

Effect

If the CPI detects an inconsistency in the sbeginc event, it
causes a creject event. If no inconsistency is detected, a
channel machine is initialized which then sends a
corresponding Begin_Command.

Channel Machine States

CURRENT STATE INPUT I NEXT STATE OUTFUT COMMENT
(SUB-STATE) I

-- - - -- - - - -- - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - -

NULL acceptable SENDER I c accept initialize channel I
s_begin_c PENDING Begin_Command machine

any other s begin c - I creject I log the error
I state (acceptable or I

unacceptable) I
- - -- -- - - - -- - - - - - - - -I-- - - - - - - -- - - - - - - - - - - - - - - - - - - -

Syntax

Ref: FIXED(?)
Group: FIXED(12)
Member: FIXED(16)
Service: FIXED(16)
Text: VARIABLE

Semantics

Ref: specifies a unique identifier supplied by the SAPI to
identify the response to this event via the c accept or
c_reject events.

- 120 -

s_beg i n_c

Group and Member: specifies the virtual channel to be
established. If this field is zero, the CPI will choose'the
Group value.

Service: specifies the number of the SAPI to which the virtual
channel is to be established.

Text: contains the service access protocol message.

1121

I - 121 -

s -begin-r- --

IIIs beg i-nr

-Cause

I An SAPI causes an s begin-r event in order to respond to a

c begin_c event.

Effect

.1 f If the CPI detects an inconsistency in the- s_begin r event, it
causes a c-reject event. If no inconsistency is detected, the

channel machine then sends a corresponding Beqin_Response.

Channel Machine States

CURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE) II

IRECEIVER I acceptable IESTABLISHED c caccept
I PENDING s sbeginr I BeginResponse

I RECEiVER acceptable INULL I cacceptI
I PENDING s sbegin r IIBegin Response

I I (Ntatus'(O) I (Statusylo)I

REEIE acceptable I c reiectI
I TAKING BACK Is begin rII

(9tatus=i) II
---------------- ------------- --------- ----------- ------------

I RECEIVERl acceptable *NULL Ic acceptI
I TAKING-BACK Is begin r IIBegin Response I
II (Ntatus~o) I (Status l)I

I any other Is begin-r c-------- reject Ilog the error
I state I(acceptable or III

unacceptable) II

ii Ref: FIXED(?
Group: FIXED (12)

I ~Member: FIXED (16)

-122-

s-begin r

Status: FIXED (8)
Text4 VARIABLE

Semantics

Ref: specifies a unique identifier supplied by the SAPI to
identify the response to this event via the c accept or
c_reject events.

Group and Member: specify the channel referred to by the
c_beginc event.

Status: indicates to the channel machine whether the attempt
to establish a channel has been successful. This field will
contain one of the standard status codes (see c_reject).

Text: contains the service access protocol message.

- 123 -

s_ end, c

i
send c

Caus6 -

An SAPI causes an s end c event in order to terminate access
t,o the service.

Effect

If 'the CPI detects an inconsistency in-the s end c event, it

causes a creject event. If no inconsistenc- is-detected, thej Ichannel machine then sends a corresponding End Command.

r12

I - 124 -

%~ send c*

Channel Machine States

---------------- ------------------- --------------- ---------------- w-- ----------
I CURRENT STATE IINPUT !NEXT STATE IOUTPUT ICOMMEiT

(SUB-STATS) I II

NULL Iacceptable b--- IacceptI

s send c IEnd CommandI, f
ISENDER I acceptable I SENDER I c accept II
I PENDING s send c (flushing I TAKIWG BACK IEnd CommsandI

I or non-flushing) I I(flushing) I

II -- - - -- - - -- - - -- - - - -- -- ---

IRECEIVER Iacceptable INULL c cacceptI
I PENDING s send c (flushing I End-Com."and - I

II or no;n-flushing) I I(flishing)

ISENDER Iacceptable c-------- caccept I
I TAKINGBACK s send-c (flushing II En dComnzandII

IIor non-flushing) I I (fl'ushing)I

IRECEIVER_ acceptable INULL Ic accept
I TAKING-BACK s send c (flushing IIE~d CommandI

IIor o-n-flushing) II (flu6shing)I

IESTABLISHED Iacceptable ISENDER Ic accept Idiscard any queued I
s I end c I TERMINATING U Elnd Command IdataI

I I (flushing) J ~ (flishing) I

II -- - - - - - -- - - -- - - -- - - - - - -- - - - - - - -
IESTABLISHED I acceptable ISENDER c caccept I discard any data I

II (with data I s end c (non- I DRAINING I queued for SAPI;
I queued for I fTush-ing) I Isend data to

I apposite I Iapposite CPI; placeI
CPI) IjIEnd Command (non- I

I I If16ushing) at end of

discard any Iicomina I

messages

ES-nBLISHED Iacceptable I SFNDER_ I c accept Idiscard any data I-
I (with no I s and c (non- I TERMINATING I End Command (non- I queued for SAPI;daaqee la~g lsig cnweg u

I for II discard any incoming I
I aoposite I messages
I CPI) I

ZENDER Iacceptable ISENDER I c accept Idiscard any queued I
I DRAINING Is end c I TERMINATING IEnd Command Idata

El I(fusiMng) II(flu, shing)

I EFIC I acetbeNLI cetIdsadaydt

I DRAINING I s end c (f..ushing I IEn d Command IqueuedI
I I or non-flushing) II (flishing)II

SENDER I acceptable I-------Ic acceptI[
TERMYNATING s send c (flushing IIEnid Command
I I o7 non-flushing) I I(fl'~shing) I

IRECEIVEP Iacceptable INULL Ic accept

I _ non-flushinq) I I (flushing)

unacceptable, II
I lsigor non-I I

ii fl us'-i ng)I II

ii i Syntax

Ref. FIXED(?)
Group: FIXED (12)
Member: FIXED (16) -

Control: FIXED(8)
Tect: VARIABLE

Semantics

Ref: specifies a unique identifier supplied by the SAPI to

-identify the response to this event via the caccept or

c_reject events.

Gru and Member: specify the channel to be terminated. If

the Group is not zero and-the Member is zero, all channels

with the same group are to be terminated. If both Group and

Member are zero, all virtual channels are to be terminated.

Control: The Control field bit has the following meaning:

Flush 2aa: (bit 1 = 1) means immediately flush data
which is queued going away from the sender of the

End Command and terminate the channel. If this option

ii not requested (i.e., if bit 1 = 0), the EndCommand
is not to take effect until all data queued going away

from the sender o.f the End_Command has been processed in

the normal manner.

Text: contains the service access protocol message.

° I
S-126 -I

3_tfJ r

An SAIP causes an s end _r event in order to respond to a
c__end c e-wzn't.

Effect

if the CFP detects an inconsistency in the s end r event, it
causes a creject event. If ro inconsistency is detected, the
channel machine then sends a corresponding EndResponse.

Channel Machine States

i : I N STT

I I I lz I
I - -- -- --------------------- -e I -

- --------------- - I .-- .-- .-.-- I

I -g;: z I -_:_ I I _ ; .. I"

I l rII I I

I ~~ I I~ abeo ! I-

* I I II Ian Ote 5 end r esosI

Syn ta

Re f FIXED (?)
Group: FIXED (12)
Member: FIXED (1 6)
Status: FIXED (8)
Text : VARIABL

-1.27- j

sed r

Senantics

Ref: specifies-a unique identifier supplied by the SAPI to
identify the response to this event via the caccept or
c reject events.

Group and Member: specify the virtual channel referenced in
the c end c event to which this is a response.

Status: indicates to the channel machine whether or not the
Ic end c event has been successfully completed. This field
will contain one of the standard Status codes (see creject).

Text: contains the service access protocol message.

-1

I

j

- 128 -i

1.__

s--execute c

s executec
I _

Cause

FAn SAPI causes an s execute c event in order to send data to
its apposite outside the normal flow of data.

Effect

If the CPI detects an inconsistency in the s execute c event,
it causes a c -reject event. If no inconsistency is-detected,
the channel machine then sends a corresponding

ExecuteCommand.

Channel Machine States

ji- - - --------- --------- ------- ----------------- ------------------
ICURRENT STATE IINPUT INEXT STATE I OUTPUT ICOMMENT

I I (SUB-STATE) I II
I I------------------- --------------- --------------------- ---------------------- I

I SiTABLISHED Iacceptable c --- Icaccept Iplace
I I s execute c I Eecute Command IExecute-Command at I
I I (sgynchronize) IIend of send queue I

----------------------- --------- --------- --------------- --------------------- ---------------------- I

I ~ESTABLISHED Iacceptable -------- caccept Iplace
~(expedite) orheaof-send queue

REEVR IacptbeIcrjc I dsadthe message!
I DRAINING I s execute cI

------- ---------------- ------------------- --------------- --------------------- ---------------------- I

Iero sttI;cpa~eo

unacceptable) II II

~~Sy taxj

Ref: FIXED(?)
Group: FIXED(12)I
Member: FIXED(16)
Control: FIXED(8)
Text: VARIABLE

ii -129-

s execute d

Semantics

Ref: specifies a unique identifier supplied by the SAPI to
identify the response to this event via the caccept or
c_reject events.

Grou!p and Member: specify the channel to which this event
applies.

Control: The Control field bits have the following meaning:

Attention: (bit 0 = 1) means inform the SAPI module of
the arrival of an Execute Command with the Attention bit
set.

Synchronize: (bit 3 = 1) means place the Execute Command
at the end of the Sending Queue of the local CPI.

The Execute Command is executed at the remote CPI as follows:

If synchronize,

place the ExecuteCommand at the end of the queue
of data to be read by the SAPI module;

otherwise,

place the Execute Command at the beginning of the

queue of data to be read by the the SAPI module.

if attention,

immediately notify the SAPI module of the arrival
of the ExecuteCommand.

The meanings of the various bit value combinations to the
remote CPI are summarized in Table 1.

Table I

EXECUTE Command Control Field Bit Values

Bit
0123 Meaning

0000 Place the Execute Command at the head of the
Receiving Queue.

1000 Place the Execute Command at the head of the
Receiving Queueueue and notify the SAPI module
of the attention.

I130

s eXecutec

0,001 Place the ExecuteCommand at the end of the
Receiving Queue.

1001 Place the ExecuteCommand at the end of the
Receiving Queue. Notify the SAPI module of the
attention.

Text: contains the service access protocol message.

J

I|

- 131 -

s- x c t- .r--~-.~ --

ss executerr

Cause

An SAPI causes an s execute r event in order to respond to a
H~ cexecute c event.

~~ JI Effect __

If the CPI detects an inconsistency in the s execute r event,
it causes a c_reject event. If no inconsistency is-detected,
the channel machine then sends a corresponding
ExecuteResponse.

Channel Machine States

---------------- ~~ -- - - - - - - - -I-- - - - - - - -- - - - - - - - - - - - - - - - - - - -

I CURRENT STATE I NPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATE) I I

_'STABLISHED Iacceptable I cacceptR place a

REEIE acceptable c------ creject Idiscard the message
DR14N sexecuter I

ayohr s execute 1-r c----- - creject Ilog the error
S~atI (aicceptahle or

unacceptable) II

SyntaxI

Ref: FIXED(?)
Group: FIXED(12)
Member: FIXED(16)
Status: FIXED(S)
Text: VARIABLE

132

s execute r

Semantics

Ref: specifies a unique identifier supplied by the SAPI to
identify the response to this event via the c accept or
c_reject events.

Group and Member: specify the channel to which this event
applies.

Status: indicates to the channel machine whether or not the
Execute Command was correctly formulated and any requested
action has completed. The field will contain one of thestandard Status codes (see c reject).

Text: contains the service access protocol message.

- 133 -

s-identify

s identif y

Ca use

An SAPI cause~s an s$ ide-t-ify event in order to identify itself
to its CPI.

Effect

KWhen a CPI receives an s identity event, it attempts to
f validate the SAPI. The attempt may fail if the SAPI already

exists or if it is not privileged or if an inconsistency in
the s identify event is detected. In this case, the CPI will

j icause a c reject event. If the CPI is able to validate the
SAPI, it will cause a c accept event.

~i I Channel Machine States

ICURRENT STATE IINPUT INEXT STATE I OUITPJT ICOMMENT
I (SUB-STATE) III

INULL Iacceptable c------ --- caccept Iregister the SXPI
I Is identify I

Iany other s Sidentify I- ------- c reject Ilog the error
I state I(acceptable or II

I Iunacceptable) II
------------ ------------------- I--------------- --------------------- ----------------------

Syntax

Ref: FIXED(?)
Service: FIXED(16)

Semantics

Ref: specifies a unique identifier supplied by the SAPI so

vnthat it can identify %the eventual c-acrept event or c_reject

-134-

- s identify

Service: specifies the number of the SAPI .which is to be
validated with the CPI.

Note: To provide rrotection against a process masquerading as
an SAP!, some sites may -require additional -fields for
validating an~ SAPI.

:13

~sready

s- ready

Cause

An SAPI causes an s ready event in order to notify a channel

mahn hti s9U oacp aa

Effect

If the CPI detects an inconsistency i'n the s ready event, it
causes a c_reject event. If no inconsistency is detected,
then if the channel machine has data queued for the SAPI, it
attempts to transfer the data to the SAPI via a c transmit c
event and updates the channel interface flow-control.

Channel Machine States

I CURRENT STATE I INPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB-STATO~ II

I -- - - - - - - -- -- -- -

I I ESTABLISHED I acceptable I-------*c accentI
II (with no I s readyI

I data queued Ice~h: ACP

I fSAPI) I

I ay the Ia ead I---------I cejctI --og-----e --error -
E STABLED a cceptable o acep

I S7P) Iunc pabe I

REEIEntcptbeaxccp
Ref:'U FIXED(?)rasmt-
G(oup: dataD1I
Muemefr I~~I! FIXD (8)SAP6

-- ------------------------ -----------------------

s_eady-

-Semantics

Ref: specifies a unique identifier supplied by the SAPI to
identify the response to this event via the caccept or

4c~reject events.r Group and Member: specify the channel to which th'is event

applies.

Msgs: specifies the number of TransmitCommands the SAPI is
able to accept- on this channel. The value of Msgs replaces
any previous value.

Vi

Ii

137
I 1 - 3 7

I -___________

* s status

L -status

V Ca use
An SAPI causes an s status event in order to obtain
information about the status of a channel.

Effect

When a channel machine receives an s status event, it is to
determine its present state and cause a c status event to
notify the SAPI.

Channel Machine States

..I
r CURIENT STATE INPUT NEXT STATE IO1TPUT I CO1Er'"

(SUB-STATE) ' I

any state acceptable c_status I determine status
s status I I

- I

Syntax

Ref: FIXED(?)
Group: FIXED(12)
Member: FIXED(16)

Semantics I
Ref: contains a unique identifier supplied by the SAPI to
ide itify the response to this event via the caccept or
c_reject events.

Group and Member: specify the channel on which status has been
requested.

1i

-- I

s transmit cJ
s transmit c

I
Cause j

An SAP-I causes an s transmit c event in order to send flow- I
controlled, in-order data to-its apposite.

Effect

If the CPI detects an inconsistency in the s transmit c event,
it -causes a creject event. If no inconsistency is detected,
the channel machine then sends a corresponding
Transmit-Command. If the channel machine determines that the
channel interface flow control should be updated, it also
causes a cready event.

Channel Machine States

SUB-STATE)

CURREST STATE INPUT NEXT STATE OUTPUT CO-MENT J

I ESTABLISIIED I acceptable I c accept
s transmit c ITransnit Iorand I

RECEI'R-R I acceptable Ic _reject I discard the message I
DRAINING s trans I I

any other s transoit c I c reject | log the error I
I state 5:cceptabli or I I

I unacceptable) III

Syntax

Ref: FIXED(?)
Group: FIXED(12)
Member: FIXED(16)
Control: FIXED(8)
Text.: VARIABLE

A139

'i !~
--- 139

s transmit-c -

'i Semantics

Ref: specifies a unique identifier supplied -by the SAPI- to
identify the response to this event via the caccept or
c-reject events. w

Group and Member: specify the channel to which this event
applies.

Control: is undefined.

Text: contains the service access protocol message.

[

1

I -4Ii

.i
i -1I --

Imtal zi3 most - 1fttMa

* TC- initializre (or resmart) b=st - fi~ e c a'j , 4
foljCWiin see=e of stCps =st be taeC=

HOST: 1 The zf EF- Maintenance Servce causes
an s _ nc ewent win

' ZOST: 2) rte bast CP1 cases a Elmsbiom c en5 c
ewent f=- eac cz"Ral a swem-sa
flericeI o =z P rard vifteNn Serao =

xab = IV to -t-- framit end Cp'l-

FRONT E*D: 3' The fron1 end CPI cases a flsing
centc erent for eatzenacezel azn

seuss an~ EEs b~ein"ib S~ttu =o =

FROeTer = to-h tlroe nt e st Cpl.-
HOST: 4) The host CP1 causes a cend r event for

the host F ? artenance nSerice to
inicate thaet all con e-ctiorns ftawe bee-n

• i ervicae-

80TP: 5) nfuecessary, the hn~st 3rA- the f.rOnt
end reinitialize lik leeln
cocemunication., this is ane is
installation dendent.

HOST: 6) The host HFP nai elarnce Service cases
an s_hegin c event.

HOST: 7) Th2 has- CP1 sends a Begin Comand with
Service code = <9.FP ofainte~ance Service

* J Code%~

FRONT EUID: 8) The front end CP1 causes a cEbegin c
event Lor the HFP maintenance Service.

FRONT EN~D: 9) The front6 end HFP Maintenance Service
causes an s begin-r with Status =0.

*FRONT END: 10) The front end CPi sends a

BeginResponse with Status = 0

HOST: III The host CPT causes a c begin r event
with Status = for the HPP Maintenance
Service.

When the above steps have been completed, host - fron- end
$1communication may p.-oceed (i.e.: virtual channels nay be

established).

[[
If

|I

BLANK PAG
l - 1 2 - !

I '

-Specifying Service Access Protocols

SPECIFYING SERVICE ACCESS'PROTOCOLS

Introduction

Together, the link and channel protocols provide a reliable

-virtual communications medium for the service access protocols.

Each servIce access protocol provides the host with access to a

specific service offloaded to the front endi e.g., a network data

transport service or a network virtual terminal (for a detailed

discussion, see Day, J.; Offloading ARPANET Protocols to a Front

End, CAC Document No. 230, 1977). Since each service access

protocol definition depends on the service to which it provides

access, the service access protocols cannot be specified in the

present document. However, to ensure uniformity, consistency,

and completeness, the forms that service access protocol

specifications and adaptation descriptions (see below) should

follow have been specified.

Specifications and Adaptation Descriptions

Each service access protocol is described by

a) a service access protocol specification, and

b) a set of service access protocol adaptation
descriptions.

A Eirv'ie access protocol specification defines the rules for

- 143 -Li ___

Specifying Service Access Protocols

communication between apposite SAPIs in the host and ih the front

end. The unit of service access protocol communication is the

service access protocol message. Service access protocol

messages correspond to channel protocol messages, i.e., there is

a service access protocol begincommand corresponding to the

channel protocol Begin Command, a service access protocol

transmit command corresponding to the channel protocol

Transmitcommand, etc. (To distinguish service access protocol

messages from channel protocol messages, service access protocol

i messages are written all lower-case.) Service access protocol

messages are carried by the TEXT field of the corresponding

channel protocol messages. Thus, specifying a service access

protocol amounts to defining the TEXT fields of the channel

protocol messages in terms of the corresponding service access

protocol messages.

Since choices must be made in implementing a service access

protocol for a given host and front end (e.g., in handling

mismatch between host and front end word sizes and/or character

sets), an adaptation description describing these choices must

also be made for each implementation of the service access

protocol.

- 144 -

Specifying Service Access Protocols

Service Access Protocol Specifications

Each service access protocol specification shall have the
following form:

<name of the service to which access is provided>
Service Access Protocol

Specification

I. HFP Code Number for the <to be accessed> Service:

Give the HFP Code Number for the service to be
accessed.

II. Description of the Service to be Accessed:

Describe the service to be accessed. The description
of the service is to include:

a) its purpose,

b) background information,

c) an overview of its operation,

d) optional features,

e) supporting services that must also be
implemented, and

f) an overview of the offloading strategies relevant
to this service,

g) references to relevant documents.

III. Message Use

Describe how each service access protocol message is
used. The messages are to be discussed in the order:

begincommand (Section III.A)
begin response (Section III.B)
end command (Section III.C)
endresponse (Section III.D)

- 145 -

Specifying Service Access Protocols

execute command (Section III.E)
executeresponse (Section III.F)
transmit command (Section III.G)

Note: the TEXT field of a Transmit Response is never
passed to an SAPI by a CPI. Therefore, there is no
service access protocol transmit_response
corresponding to the channel protocol
Transmit_Response.

The description of each message is to have the

following form:

III.<X>.l When Sent

Describe the circumstances under which this
message is sent.

III.<X>.2 Action on Receipt

Describe the actions to be taken by the
receiver of this message.

III.<X>.3 Syntax

Define the syntax of the service access
protocol message. Include the minimum
length of each field. For the detailed
format of this section, see "Specifying
Fields" below.

III.<X>.4 Semantics

Define the semantics of each field defined
in III.<X>.3 "Syntax". Each definition will
include at least:

a) the meaning of each value for each
field,

b) the restrictions on the values for each
field,i

c) the default value for each field and
how it is expressed, and

d) the interaction of the values of each
field with the meanings of other
fields.

-146-

Specifying Service Access Protocol s

SpecifXng Fields

Service access protocol messages are carried by the TEXT field of

their corresponding channel protocol messages. TEXT in. channel

protocol inessages consists of fields. The value of each field

represents a datum. The datum may be simple, e.g., a network
port number. Or the datum may be a complex of data, e.g., the

set of parameters necessary for initiating a network connection.

The data represented by a field may always require the same field

length, e.g., ARPANET socket numbers always require 32 bits. A

field representing such fixed-length data is called a fixed

field. It consists of a bit string (at least) long enough to

represent the data.

The data represented by a field may require varying field

lengths, e.g., user names consisting of character strings. A

field representing such variable-length data is called a variable

field. It consists of a fixed length count part followed by a

bit string content part. The content part must be long enough to

represent the datum. The value of the count part is the length

of the content part. The length of the count part must be chosen

to be large enough to represent the length of the largest

conceivable content part. This length may be expressed in bits,

characters, bytes, words, or any other convenient units. The

units must be specified together with each field in the Syntax

section (if known when the service access protocol is specified)

and in the adaptation description.

- 147

Specifying Service Access Protocols

The data represented by a, vari'ble field may be complex, and the

fields representing the values -9f the data may themselves be

fixed or variable, simple or complex. In s6me cases, it may be

desirable to have a fixed qualifier field as the first field

representing a complex datum. This qualifier field will aid in

the parsing and interpretation of the rest of the fields.

A service access protocol specification describes the features of

the service access protocol common to all implementations. Word

sizes and convenient data alignment boundaries may differ among

implementations. Therefore, a service access protocol

specification cannot prescribe the field formats for all

implementations. But a service access proto.ol specification can

and must specify what fields are to be present, their content,

and their minimum lengths.

A fixed field is to be represented by:

<field name> : FIXED(<length>)

A variable field is to be represented by:

<field name> : VARIABLE(<count part length>)

A complex field is to be represented by:

<field name> : COMPLEX(<count part length>)
<field name>

<field name>:

where hierarchy of structure is indicated by indentation.

-148-

..

Specifying Slervice Access Protocols

Defaults

The de fault value is expressed by:

a) the absence of the field, if it is part of a complex
field and all subsequent fikelds 'which are part of the
complex field are also absent;

b) zero length, if the field is a variable field;

c) a predetermined value (e.g., zero), if the field is "3

fixed field which does not meet condition a).

-149

Adaptati6n Descriptions I.

Adaptation Descriptions

Each service. access protocol adaptation. description shall have
the following form:

<name of the service>
Service Access Protocol
Adaptation Description

Section I. De:.cription of the Adaptation

I.A Service Access ProtocolI I
Give the complete reference citation for the
service access protocol specification on which
this adaptation is based, including document
numbers, date, etc.

I.B Applicable Hosts and Front Ends

Present a table showing the classes of hosts and
front ends for which this adaptation is intended.

I.C Supported Facilities List

Present a table showing the optional facilities
supported by this adaptation. A more detailed
discussion of each facility supported is to be
found in section II.B.

I.D Unsupported Facilities List

Present a table showing the optional facilities
not supported by this adaptation. A more detailed
discussion of the limitations of this adapt-tion

Setinis to be given in section II.C.

Section II. Discussion of the Adaptation

II.A Distribution of Functions

Discuss the scheme or schemes supported by this
adaptation for distributing functions Letween the
host and the front end.

I II.B Optional Facilities Supported

Discuss each of the facilities listed in section
I.C. This section is to contain a subsection for

-150-

......

Adaptation Descriptions,

reach of the facilities.

SII.C Unsupported Optional Facilities

Discuss the optional features of the service
access protocol that are not implemented and
discuss the general limitations' of this
adaptation.H II.D Additional Facilities

Discuss in detail any facilities not provided for
- or left undefined by the service access protocol.

7n, II.E Host System Considerations

Discuss how the host SAPI must manipulate various
1- host system primitives, system commands, user

programs, etc. to perform its functions.

I II.F Translation Considerations

II.F.l Command Translation

Discuss the problems of translating command
functions from those of the offloaded
proto-ol into equivalent functions in the
host system.

II.F.2 Data Translation

Discuss any data representation mismatch (see
below), the translation problems involved,

and how they are solved in this adaptation.

II.G References

Give references to all relevant documents.

Section III. Definition of the Adaptation

III.A Command Translation

Describe in detail the command translations that
are performed by the host SAPI. For example, if
the service defines a function called "Intersect",
then this section is to give a detailed
description of how the host SAPI performs this
function.

151 -

Adaftatioi-Descriptions "

11I.B Data Translation -

Describe in detail any data translat'ions tha-t are
performed by the SAPIs. For example, if. ASCII is
converted to EBCDICi the conversion table is to be
given.

III.C Syntax i

Despribe the syntax of each service access
protocol message, if it differs from the service
access protodol specification. The description is
to be in the same order and in the same form as in
the service access protocol speci-fication. it may
be convenient to define additional facilities and
fields at this time.

151II
:1

i - 152'-

I- - Adaptaton Descriptions

Data Representation Mismatch

The data representation-misratch problems which must be addressed -

by an adaptation description are:

a) character set mismatch and

b) data unit size -m-ismatch. -

The character sets and codes employed by the host and front end

may differ. Any translation required is to be specified in the

adaptation description.

The sizes of the data qnits employed by the host and the frornt

end may differ. This may require redefinition of the syntax of

service access protocol message fields in order to place them on

A convenient boundaries. This redefinition of fields may involve:

a) extending fields beyond the minimum lengths specified
in the service access protocol specification, and/or

b) inserting padding fields where required.

Any transformation of data from one unit size to another is to be

specified in the adaptation description.

1

1 1
I -I

V - 153 - .1 ;

I I

BLAN PIG

I -
!I

S-154 -j

Ji

SServwice Access-Protocl inepreter
ftalte Table

f.iis section contains th-e detailed sae transition table for a
SAPI interacting witb a c nel ine. This state table oi
be a subset of te state table f,'r amy SAFI The SAIP al e
channel nachine comanicate via cn.ael interface a-ents- Fe
channel machine checks the events frac &!e SP . for nsistog-mz
and rejects any inconsistent events.

Notationa

States. All state nanes are printed .ith all capital letters.
If the state nane consists of to or ore words, tVe wo s are
separated by an underscore ()o Exanples: l;-L, S EW _.PFFC15

Events. All event nanes of events caused by a S-kP! are either of
the form:

s <interface event naze> <avent suffix>

where <interface event nane> is one of the foliowing:

I begira
transait
e~ecute
end

I and <event suffix> is either

c indicating a Coznd
or r indicating a Response

or of the form:

s <interface event nane>

where <interface event name> is one of the following:

ready
identifystatus

15

[-]155

Al! we-tZ C~e of ewatz Ca~ze3 L-C a CPIf or one of 5ts Channel
mrn~ims are &ftlvr of the, fari:

c C er eenet awrzl < v -suffix),

wtere Oteirffa che t aee is *,.e of t ee foseoiro;n:

o~and toewe' sl ffiere> is tie san'e as are

or of esor=

C _interface even t nane>

ener eeInterface ewert zo > is ane of the folonip:

ready
statcs

reject-

Event sazes are all lrer case- or srie seginc, cbeginnc,
s-ready, c stalus.

dsed ataile , ne "ripsond each event can be oisd i t ie seci on
entinled hCienel Interfaceo

Acceptabe/benacceptabne an event ny be found unacceptable by an
SAPI if t e he detectS an error in the Tezt field or ii it is
na'le to fuf ill the regest descrihed in t Text field due to

lack of resources, inscifficient access rights, etc.

Statas :; 0: an evept with~ this annotation Indicates t'at the
event tLo.- winic it is a response was not seccessful.

Generic Rev i ts: a process or user of an SAPT generates inputs
t o it. These in~aits are modelled in the state table as 'qeneri-
inpuJts'. They ar-e 'request for service', 1'request ternination",
'~send data', and "send ExecuteCor-mand'. This specification &Wes
not define the parameters or any other chbaracteristics of tl e
inter face between an SAPI and any higher level processes, it
nerely 2cognizes the existence of such interactions. this
interface may be definel try thie service level protocel or
adaptation descriptions. It nay be highly specific not only to

- 15 -

SAPI States

the SAPI but also t3 the environnent in which it is implemented.

SAPI States

.u-L= -n SA.PI in this state is not active.

PE-qDZMS= An SAPI in this state has requested its CPI to atteript
to establish a Virtual channel to its apposite. It has -caused an
s begin c event and is waiting for a c begin r event. (The
channel machine has sent a BeginCormand and is waiting for a
BeginResponse.)

TAKI BACK: An SAPI in this state has been requested to
terminate corznication with its apposite while it was in the
PENDINIG state and has caused an s end c event before the
c begin r event has cone froe the channel n-achine.

ESTABLISHED: An SAP!T in this state has established conunication
With apposite.

TEMIX-TING An SAP! in this state has been requested to
teminate counication with its apposite, and has caused an
s end c event and is waiting for the c end r event acknowle.ging
ternination by its apposite. I

iI

I!

I5

- 157 -

SAPI States

-- - - -- - - - -- - - - -- - - - -- -- - - -- - - -- - - - --- -- - - - - -- - - - -

ICRWtaUT STATE IN-PUT N IEXT STATE I OUTPUJT ICOMMENTf
I (SU3-STAE-)II II

- - - --- - - - -1~~ -- - - - - - - - - -- - - - - - - --- --- -- --- --- -- --- --- -- --- --- --

N 5ULL I request for I PENDIPM. s I begin cI
II service

I -- - - - - - - - - -- - - - - - - -- - - - - - - - - - -- - - - - -- - - - -
NUK~LL I acceptable IESTABLISHED 1 s begiA r I set -sp serviceI

II C begin c I I (Statusfl)I

IIII -- - - - - - - - - - -- - - - - -- - - - -
I W&LL Iunacceptable z--------_begin r I

I ctpegin c I (Status703

I NULany other eventI-------II

-158-

SAPI States

CURRENT STATE INPUT NEXT STATE I OUTPUT I COMMENT

(SUB-STATE) I1
------------------------------------- ------------- 7 ---- ----------- I -I 7 I I I"I

I PENDING, request TAKING'BACK r s end c
termination 7- I (Elusing) I

-- - - - - - - -- - - - - - - - - -.... ... be.... .n. [I
PENDING acceptable ESTABLISHED

c_.begin r

{IStatus=0)

PENDING c.begin r NULL terminate service
{status'0) I for user

-- - - - - - - II

PENDING unacceptable TERMINATING s end c I terrminate service
c_beiin.r (lusihing) for user
(Status=O)

PENDING c end c NULL s end r I terninate service
(:usihing or I r user

I non-flushing) I
- --- - - - - -I -- -- -- - -- -- -- -
--- --------------- ------------------ I

I PENDING c reject attempt error
recovery

-- - - -- - - - -- - - -- - - - I I -- - - - -- - - - - -- - - - - -- - - - -

I PENDING Iany other event I------
II - - - - - --- ----

I.

159

SAPI States

----------------- ------------------- --------------- ---------------- ------ ------------ ---------- H
ICURREIT STAiTE INPUT INEXT STATE IOUTPUT ICOMMENT
I (SUB3-sTATE) IIIII

II ---------- -------- -------- I --- ----

_CIN IA9 c ei NULL IIterminate service I
-- I(flausing) I Ifor user -

-- -- -- - - - -- - - -- --- -- - - - - - -

-PK~ AK cendi c NULL Iterinate service

I ~---------------------- ---------

------------- BAK ai te vn ----------- -- ---------------- I
c en r NUL I triaes v ic

1-for use
---- --- --- --- ---- --- -- -- --- -- ---- --- --- -- -

-- - -- - -- - -- - -

TA.1 RAK crjet-tnp ro
ieovr

~~160

SAPI States

ICURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT
J I (S'B-SIATE) II

IESTABLISH*ED Irequest ITERMINATING s send c (flushing I

IES~hI:~termination or non-flushing as trnfrIaaa

k III (flush~ing or I roruuserd)
I no -lsig

I ESTA~LISIID I C'execut~c---------------se-ecu-----
ESA11iE I seddtI rnmtctase aaa

I aloe byIred
--------- EIAIIE I xct --------

II~ - - - - - - -- -- - - - - - -I-- - - - - -- - - - - - - - - - - - - - -
ESALSED Isn I exct c

IESTAB.ISHIED Ic rect NULL---------- I atemnte er ice

I (YuIin orfrue
I no -lsig

I ESTBLISIEI) I ctansmt'c -------------- rnfr aaa

I ~'r~n~srEI I ay t'er vet ------- ---- ----------

_____ --- -~ - -- ----- _______-

ICURRENT STATE IINPUT INEXT STATE IOUTPUT ICOMMENT

I (SUB-STATE)

ITERMINATING c cend c INULL s send r I terminate service
I I(flushing or IIfor user
I I non-flushing) I

TEMIATN _ cend-r I NULL Itermnante service

TEMIATN any other event I

-162 -

HFP Maintenance Service .K.

HFP MAINTENANCE SERVICE

Introduction

The HFP Maintenance Service provides the management functions for
the host to front end protocols. Since the present document
fully specifies only the channel protocol, these management
functions are here defined only in relation to the channel
protocol, The HFP Maintenance Service may also provide

management functions for the link protocol and the service access
protocols. Whenever such additional management functions are
defined for the HFP Maintenance Service, their definitions should
be incorporated into the present specification.

The HFP Maintenance Service provides three management functions
for the channel protocol. These are:

1) initializing host - front end communication,

2) recording CPI error reports, and

3) communicating CPI error reports between apposite CPis.

The HFP Maintenance Service is implemented in both the host and
in the front end. The two HFP Maintenance Service
implementations communicate via an HFP Maintenance Service Access
Protocol, which uses the channel protocol implementation as its
communications medium.

y

- 163 -

HE Ma-intenance Service

HFP Maintenance Service
Service Protocol
Specification

I. HFP Maintenance Service Code Number

0 (Zero)

II. Description of the HFP Maintenance Service

The HFP Maintenance Service provides management functions for
the link, channel, and service access protocol interpreters
(see Introduction, above).

Synopsis of Message Use

begin commandFI
is sent by the host HFP Maintenance Service to
initiate (or restart) host-front end
communication.

begin response

is sent by the front end HFP Maintenance Service
to confirm the establishment of communication.

end command

is sent by either the host or the front end HFP
Maintenance Service to terminate channel level
communication.

end response

is sent to confirm that channel level
communication has been terminated.

execute command

not used

- 164 -

HFP Maintenance-Service

execute respongeI §
not usedItransmit -commnand.
ia sent by either the host or the front end HFO
Maintenance Service to communicate error reports
made by the CPIs.

.;165

HFP-Maintenance Service -

II.. Message Use

III A. begin command ,

III A 1. When sent

A begincommand is sent by the host RFP
Maintenance Service when the host HFP
implomentation is ready to engage in channel
level communication.

III A 2. Action on receipt

When the front end HFP Maintenance Service
receives a begincommand, it determines
whether or not the front end HFP
implementation is prepared to engage in
channel level communication, and, if so, it
sends a begin-response.

IIIA 3. TEXT field syntax

empty

III A 4. TEXT field semantics

irrelevant

166I I
:I

HFP Maintenance Service

I1 III B. begin response

III B 1. When sent

A beginresponse is sent by the front ena HFP
Maintenance Service when the front enc HFP
implementation is prepared to engage- in
channel level communication.

III B 2. Action on receipt

After the host HFP Maintenance Service
receives a beginresponse, it proceeds to
handle error reports from the CPI.

III B 3. TEXT field syntax

Li empty

III B 4. TEXT field semantics

irrelevant

-167 -

_ II

1IFR Maintenance Service

III C. end command

III C 1. When sent

An endcommand is, sent by either HP
Maintenance- Service to terminate channel
level communication.

IIT C 2. Action on receipt

When the host or front end HFP Maintenance
Service receives an end command, it should
notify all SAPI's using the HFP that service
is ending, "clean up", and send anii endresponse.

1 III C 3. TEXT field syntax

Li empty

III C 4. TEXT field semantics

irrelevant

- 6j

-168-

III D en. lesosT

Anz end response is senit to, eoafirm tht
ehanmel levell corircation bas bxeem

terniaated..

U0 2. A-ction on rece:It

none

lII 9 3. TOMT f ield svctax

einpty

HT D 4. TEXT field senaritics

ir relevn

-169-

not Vmsgex

-170-

I! G r. (ae sent

tA fsmie , CcWi3o is sen o v efther ;;,7p

Jajrtenam e Service " ch ~ic3te an error

II G 2- {c)t Oin receipt

WnfoD an E; P -rater CPae Service reaceies a
transmit cand motifting i- of an error, it
shcn!lo E; ne e.-rvr acid if possib~le atteapt any~
error recover-

3ITL G 3.. TE-CE field Ve:Rtaz

Cause: FIX=DS

Diagnostics: C47KPLEX (?)

IIG 4.TX iedsenantics

1111 G 4 (a). Cause

this field will contain one of the Status codes.

III G 4 (b). geader

-his field conains the channel protocol HEAPER
for the imezzage in which the error was detected.

III G 4 (c)- Diagnostics

1°

This field will coptain any other diagnostic
infrmaiontha 'Lhe PT an provide relating to

the error. If this transmit command is
reporting an error at the service access level,
this field may contain the erroneous service
access protocol miessage.

171

'17

Channel Protocol Response

Status Codes

Channel Protocol Response
Status Codes

Status neaning

0 Connand was successful.

I Channel non-existent: the Group and Member fields
of a Command (other than a Begin-Command)
referenced a channel unknown to the receiving
CpI.

2 Illegal state: a message was received referencing
a channel which was in a state for which the
Command is an illegal input.

3 Conand not implemented: a Command was received
whose Type was legal but not implemented.
Currently this can only be a BeginCommand or an
Execute Command.

5 Message too long: the number of bits in the
Command exceeded the maximum parmitted by the
receiving CPI.

6 Service access protocol message error: an error
in the service access protocol message contained
in the TEXT field of the Command was detected by
the SAPI.

7 Illegal Control field value: the Control field
of the Command contained an undefined value.

32 Channel in use: the channel referenced in the
BeginCommand was already assigned (i.e., not in
the NULL state).

33 Service not implemented: the Service field in the
BeginCommand specified an SAPI not implemented
at the receiving site.

34 Insufficient resources: the receiver of the
BaginComnmand did not have sufficient resources
for establishing the host to front end channel.

35 Out of sequence: a Transmit Command was received
and discarded whose Seq field was neither in
sequence (equal to [<last received> + 1]) nor a
duplicate (between [<list received> - 71 and
<last received> inclusive) (see Flow Control).

-173-

Channel Protocol Response
Status Codes

36 Out of window: a Transmit Command was received
". and discarded whose Seq ffeld was between (<last

received> + Credit + 1) and (<last received> + 8)
inclusive (see Flow Control).

37 Bad channel polarity: the high-order bit of the
Group field in the BeginCommand had the wrong
value.

38 Service not operational: the Service field in the
BeginCommand specified an SAPI which is
implemented at the receiving site but- which is
temporarily unavailable.

39 Command discarded: the channel machine received
a Transmit Command or an Execute Command, was in
the SENDER D--RAINING or SENDER TERMINATING state,
and has discarded the Command without passing its
TEXT field to the service access level.

17

A

- 174 -

SECURITY CLASSIFICATION OF THIS PAGE fhn Data Entered)

REPORTDOCUMENTATION PAGEREAD ISTRUCTIONS
BEFORE COMIPLETI NG FORM

N. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER,

S. TYPE OF REPORT & PERIOD COVERED
WWMCCS - ---

Host to Front End Protocols

7 . CONTRACT OR GRANT NUMBER(s)

k Gry R. IGrossman C A 9

Richard H./Howe __

9. mORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT MUMBER_ .-.--

Digital Technology Incorporated .WR ..

302 East John 32017K ' P "177
Champaign, ILL 61820

* ~~It. CONTROLLING OFFICE NAME AND ADDRESS [12.-toRAT1

Defense Comunications Agency 5 N 79-t.
CCT/C420- 13. NUMBER OF PAGES

11440 Isaac Newton Sq., N., Reston, VA 22090 173 a
14. MONITORING AGENCY NAME & ADDRESS(Ji different from Controlling Office) 15. SECURITY CLASS. (of this report) .

UNCLASSIFIED

15a. DECLASSI FICATION/ DOWNG RADINGSCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release
Distribution unlimited

I "

'17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

No Restriction Distribution

III. SUPPLEMENTARY NOTES

19. KEY WORDS (Continua on rev6r~p aide if neceosa.-y nd Identify by block number)

Network Front End
Host-to-Front End Protocol

14] Protocol Specification

20, ABSTRACT (Continue on reverso side It neosoory and Identify by block number)

This document presents the specifications of .the WWMCCS Host to Front End
prptocols. A brief overview of the WWMCCS Network Front End Protocol
architecture is presented. The'link protocol is functionally specified. TheI "Channel" protocol is completely'specified. The completexchannejl protocol

specification includes a narrative overview of the channel protocol mechanisms, a
detailed treatment of each channel protocol message and event type, nd a xomplet
state table. A meta-specification for the service.access pr6toc0ls is
presented.

D , 7 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014-6601 1 .. _____l n -V

~ ~. r) , SECIITY CLASSIFICAYION OF THIS PAGF (Ilien L~st, tnterad)

